Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural changes linked to proton translocation by subunit c of the ATP synthase

Abstract

F1FO ATP synthases use a transmembrane proton gradient to drive the synthesis of cellular ATP. The structure of the cytosolic F1 portion of the enzyme and the basic mechanism of ATP hydrolysis by F1 are now well established, but how proton translocation through the transmembrane FO portion drives these catalytic changes is less clear. Here we describe the structural changes in the proton-translocating FO subunit c that are induced by deprotonating the specific aspartic acid involved in proton transport. Conformational changes between the protonated and deprotonated forms of subunit c provide the structural basis for an explicit mechanism to explain coupling of proton translocation by FO to the rotation of subunits within the core of F1. Rotation of these subunits within F1 causes the catalytic conformational changes in the active sites of F1 that result in ATP synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of F1FO ATP synthase.
Figure 2: Portions of a 3D 1H13C NOESY–heteronuclear single quantum coherence (HSQC) spectrum of subunit c at pH 8, and summary of observed NOEs.
Figure 3: Structure of subunit c at pH 8 and comparison with the structure at pH 5.
Figure 4: Models for the c12 and ac12 subcomplexes of FO.
Figure 5: Proton translocation pathways and model for the functioning complex.

Similar content being viewed by others

References

  1. Abrahams,J. P., Leslie,A. G. W., Lutter,R. & Walker,J. E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    ADS  CAS  PubMed  Google Scholar 

  2. Bianchet,M. A., Hullihen,J., Pedersen,P. L. & Amzel,L. M. The 2.8-Å structure of rat liver F1-ATPase: Configuration of a critical intermediate in ATP synthesis/hydrolysis. Proc. Natl Acad. Sci. USA 95, 11065–11070 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weber,J. & Senior,A. E. Catalytic mechanism of F1-ATPase. Biochim. Biophys. Acta 1319, 19–58 (1997).

    CAS  PubMed  Google Scholar 

  4. Boyer,P. The ATP synthase—a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997).

    CAS  PubMed  Google Scholar 

  5. Duncan,T. M., Bulygin,V. V., Zhou,Y., Hutcheon,M. L. & Cross,R. L. Rotation of subunits during catalysis by Escherichia coli F1 ATPase. Proc. Natl Acad. Sci. USA 92, 10964–10968 (1995).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sabbert,D., Engelbrecht,S. & Junge,W. Intersubunit rotation in active F-ATPase. Nature 381, 623–625 (1996).

    ADS  CAS  PubMed  Google Scholar 

  7. Noji,H., Yasuda,R., Yoshida,M. & Kinosita,K. J. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).

    ADS  CAS  PubMed  Google Scholar 

  8. Fillingame,R. H. in The Bacteria. Vol. XII. (ed. Krulwich, T. A.) 345–391 (Academic, New York, 1990).

    Google Scholar 

  9. Jones,P. C. & Fillingame,R. H. Genetic fusions of subunit c in the FO sector of H+-transporting ATP synthase. J. Biol. Chem. 273, 29701–29705 (1998).

    CAS  PubMed  Google Scholar 

  10. Birkenhäger,R., Hopper,M., Deckers-Hebestreit,G., Mayar,F. & Altendorf,K. The FO complex of the Escherichia coli ATP synthase: Investigation by electron spectroscopic imaging and immunoelectron microscopy. Eur. J. Biochem. 230, 58–67 (1995).

    PubMed  Google Scholar 

  11. Takeyasu,K. et al. Molecular imaging of Escherichia coli F1FO-ATPase in reconstituted membranes using atomic force microscopy. FEBS Lett. 392, 110–113 (1996).

    CAS  PubMed  Google Scholar 

  12. Singh,S., Turina,P., Bustamante,C. J., Keller,D. J. & Capaldi,R. Topographical structure of membrane-bound Escherichia coli F1FO ATP synthase in aqueous buffer. FEBS Lett. 397, 30–34 (1996).

    CAS  PubMed  Google Scholar 

  13. Jones,P. C., Jiang,W. & Fillingame,R. H. Arrangement of the multicopy H+-translocating subunit c in the membrane sector of the Escherichia coli F1FO ATP synthase. J. Biol. Chem. 273, 17178–17185 (1998).

    CAS  PubMed  Google Scholar 

  14. Jiang,W. & Fillingame,R. H. Interacting helical faces of subunits a and c in the F1FO ATP synthase of Escherichia coli defined by disulfide cross-linking. Proc. Natl Acad. Sci. USA 95, 6607–6612 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aris,J. P. & Simoni,R. D. Cross-linking and labeling of the Escherichia coli F1FO-ATP synthase reveal a compact hydrophilic portion of FO close to an F1 catalytic subunit. J. Biol. Chem. 258, 14599–14609 (1983).

    CAS  PubMed  Google Scholar 

  16. Hermolin,J., Gallant,J. & Fillingame,R. H. Topology, organization, and function of the psi subunit in the FO sector of the H+-ATPase of Escherichia coli. J. Biol. Chem. 258, 14550–14555 (1983).

    CAS  PubMed  Google Scholar 

  17. Rodgers,A. J. W. et al. The subunit δ-subunit b domain of the Escherichia coli F1FO ATPase. J. Biol. Chem. 272, 31058–31064 (1997).

    CAS  PubMed  Google Scholar 

  18. Watts,S. D., Zhang,Y., Fillingame,R. H. & Capaldi,R. A. The γ subunit in the Escherichia coli ATP synthase complex (ECF1FO) extends through the stalk and contacts the c subunits of the FO part. FEBS Lett. 368, 235–238 (1995).

    CAS  PubMed  Google Scholar 

  19. Hermolin,J., Dmitriev,O. Y., Zhang,Y. & Fillingame,R. H. Defining the domain of binding of F1 subunit ε with the polar loop of FO subunit c in the Escherichia coli ATP synthase. J. Biol. Chem. 274, 17011–17016 (1999).

    CAS  PubMed  Google Scholar 

  20. Fillingame,R. H., Girvin,M. E., Jiang,W., Valiyaveetil,F. & Hermolin,J. Subunit interactions coupling H+ transport and ATP synthesis in F1FO ATP synthase. Acta Physiol. Scand. 643, 163–168 (1998).

    CAS  Google Scholar 

  21. Girvin,M. E., Rastogi,V. K., Abildgaard,F., Markley, J. L. & Fillingame,R. H. Solution structure of the transmembrane H+-transporting subunit c of the F1FO ATP synthase. Biochemistry 37, 8817–8824 (1998).

    CAS  PubMed  Google Scholar 

  22. Matthey,U., Kaim,G., Braun,D., Wüthrich,K. & Dimroth,P. NMR studies of subunit c of the ATP synthase from Propiogenium modestum in dodecylsulfate micelles. Eur. J. Biochem. 261, 459–467 (1999).

    CAS  PubMed  Google Scholar 

  23. Norwood,T. J., Crawford,D. A., Steventon,M. E., Driscoll,P. C. & Campbell,I. D. Heteronuclear 1H-15N nuclear magnetic resonance studies of the c subunit of the Escherichia coli F1FO ATP synthase: assignment and secondary structure. Biochemistry 31, 6285–6290 (1992).

    CAS  PubMed  Google Scholar 

  24. Junge,W., Lill,H. & Engelbrecht,S. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem. Sci. 22, 420–423 (1997).

    CAS  PubMed  Google Scholar 

  25. Zuiderweg,E. R. P. & Fesik,S. W. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry 28, 2387–2391 (1989).

    CAS  PubMed  Google Scholar 

  26. Assadi-Porter,F. M. & Fillingame,R. H. Proton-translocating carboxyl of subunit c of F1FOH+-ATP synthase: the unique environment suggested by the pKa determined by 1H NMR. Biochemistry 34, 16186–16193 (1995).

    CAS  PubMed  Google Scholar 

  27. Rastogi,V. K. & Girvin,M. E. 1H, 13C, and 15N assignments and secondary structure of the high pH form of subunit c of the F1FO ATP synthase. J. Biomol. NMR 13, 91–92 (1999).

    CAS  PubMed  Google Scholar 

  28. Stein,E. G., Rice,L. M. & Brünger,A. T. Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J. Magn. Reson. 124, 154–164 (1997).

    ADS  CAS  PubMed  Google Scholar 

  29. Brünger,A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    PubMed  Google Scholar 

  30. Baxter,N. J. & Williamson,M. P. Temperature dependence of 1H chemical shifts in proteins. J. Biomol. NMR 9, 359–369 (1997).

    CAS  PubMed  Google Scholar 

  31. Kuszewski,J., Qin,J., Gronenborn,A. M. & Clore,G. M. The impact of direct refinement against 13Cα and 13Cβ chemical shifts on protein structure determination by NMR. J. Magn. Reson. Ser. B 106, 92–96 (1995).

    CAS  Google Scholar 

  32. Kuszewski,J., Gronenborn,A. M. & Clore,G. M. The impact of direct refinement against proton chemical shifts on protein structure determination by NMR. J. Magn. Reson. Ser. B 107, 293–297 (1995).

    CAS  Google Scholar 

  33. Dmitriev,O. Y., Jones,P. C. & Fillingame,R. H. Modeling the oligomeric arrangement of subunit c in the F1FO ATP synthase from the structure of the monomeric subunit and cross-linking in the native-enzyme. Proc. Natl Acad. Sci. USA 96, 7785–7790 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Groth,G & Walker,J. E. Model of the c-subunit oligomer in the membrane domain of F-ATPases. FEBS Lett. 410, 117–123 (1997).

    CAS  PubMed  Google Scholar 

  35. Girvin,M. E. & Fillingame,R. H. Determination of local protein structure by spin label difference 2D NMR: the region neighboring Asp61 of subunit c of the F1FO ATP synthase. Biochemistry 34, 1635–1645 (1995).

    CAS  PubMed  Google Scholar 

  36. Valiyaveetil,F. I. & Fillingame,R. H. On the role of Arg-210 and Glu-219 of subunit a in proton translocation by the Escherichia coli F1FO-ATP synthase. J. Biol. Chem. 272, 32635–32641 (1997).

    CAS  PubMed  Google Scholar 

  37. Yamada,H., Moriyama,Y., Maeda,M. & Futai,M. Transmembrane topology of Escherichia coli H+-ATPase (ATP synthase) subunit a. FEBS Lett. 290, 34–38 (1996).

    Google Scholar 

  38. Jager,H., Birkenhager,R., Stalz,W. D., Altendorf,K. & Deckers-Hebestreit,G. Topology of subunit a of the Escherichia coli ATP synthase. Eur. J. Biochem. 251, 122–132 (1998).

    CAS  PubMed  Google Scholar 

  39. Valiyaveetil,F. I., Fillingame,R. H. Transmembrane topography of subunit a in the Escherichia coli F1FO ATP synthase. J. Biol. Chem. 273, 16241–16247 (1998).

    CAS  PubMed  Google Scholar 

  40. Wada,T., Long,J. C., Zhang,D. & Vik,S. B. A novel labeling approach supports the five-transmembrane model of subunit a of the Escherichia coli ATP synthase. J. Biol. Chem. 274, 17353–17357 (1999).

    CAS  PubMed  Google Scholar 

  41. Sigrist-Nelson,K. & Azzi,A. The proteolipid subunit of chloroplast adenosine triphosphatase complexes: mobility, accessibility, and interactions by a spin label technique. J. Biol. Chem. 254, 4470–4474 (1979).

    CAS  PubMed  Google Scholar 

  42. Vik,S. B. & Antonio,B. J. A mechanism of proton translocaton by F1FO ATP synthases suggested by double mutants of the a subunit. J. Biol. Chem. 269, 30364–30369 (1994).

    CAS  PubMed  Google Scholar 

  43. Elston,T., Wang,H. & Oster,G. Energy transduction in ATP synthase. Nature 391, 510–513 (1998).

    ADS  CAS  PubMed  Google Scholar 

  44. Howitt,S. M., Rodgers,A. J. W., Hatch,L. P., Gibson,F. & Cox,G. B. The coupling of the relative movement of the a and c subunits of the FO to the conformational changes in the F1-ATPase. J. Bioenerg. Biomemb. 28, 415–420 (1996).

    CAS  Google Scholar 

  45. Kato-Yamada,Y., Noji,H., Yasuda,R., Kinosita,K & Yoshida,M. Direct observation of the rotation of the ε subunit in F1-ATPase. J. Biol. Chem. 273, 19375–19377 (1998).

    CAS  PubMed  Google Scholar 

  46. Miller,M. J., Oldenburg,M. & Fillingame,R. H. The essential carboxyl group in subunit c of the F1FO ATP synthase can be moved and H+ translocating function retained. Proc. Natl Acad. Sci. USA 87, 4900–4904 (1990).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dimroth,P., Wang,H., Grabe,M. & Oster,G. Energy transduction in the sodium F-ATPase of Propiogenium modestum. Proc. Natl Acad. Sci. USA 96, 4735–4737 (1999).

    Google Scholar 

  48. Ermler,U., Fritzsch,G., Buchanan,S. K. & Michel,H. Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: cofactors and protein–cofactor interactions. Structure 2, 925–936 (1994).

    CAS  PubMed  Google Scholar 

  49. Koradi,R., Billeter,M. & Wüthrich,K. MOLMOL: a program for the display and analysis of macromolecular structures. J. Mol. Graphics 14, 51–55 (1996).

    CAS  Google Scholar 

  50. Kraulis,P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Google Scholar 

Download references

Acknowledgements

We thank S. Cahill for assistance with the NMR experiments, and M. Brenowitz and V. Schramm for critical reading and discussion of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Girvin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rastogi, V., Girvin, M. Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402, 263–268 (1999). https://doi.org/10.1038/46224

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/46224

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing