Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence for a positive cosmological constant from flows of galaxies and distant supernovae


Recent observations1,2 of high-redshift supernovae seem to suggest that the global geometry of the Universe may be affected by a ‘cosmological constant’, which acts to accelerate the expansion rate with time. But these data by themselves still permit an open universe of low mass density and no cosmological constant. Here we derive an independent constraint on the lower bound to the mass density, based on deviations of galaxy velocities from a smooth universal expansion3,4,5,6,7. This constraint rules out a low-density open universe with a vanishing cosmological constant, and together the two favour a nearly flat universe in which the contributions from mass density and the cosmological constant are comparable. This type of universe, however, seems to require a degree of fine tuning of the initial conditions that is in apparent conflict with ‘common wisdom’.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Constraints in the Ωm–ΩΛ plane, showing relative confidence limits of 68, 90 and 99%.


  1. Perlmutter,S. et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999).

    Article  ADS  Google Scholar 

  2. Riess,A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

    Article  ADS  Google Scholar 

  3. Dekel,A. & Rees,M. J. Ω from velocities in voids. Astrophys. J. 422, L1–L4 (1994).

    Article  ADS  Google Scholar 

  4. Nusser,A. & Dekel,A. Ω and the initial fluctuations from velocity and density fields. Astrophys. J. 405, 437–448 (1993).

    Article  ADS  Google Scholar 

  5. Bernardeau,F., Juszkiewicz,R., Dekel,A. & Bouchet,F. R. Omega from the skewness of the cosmic velocity divergence. Mon. Not. R. Astron. Soc. 274, 20–26 (1995).

    Article  ADS  Google Scholar 

  6. Zaroubi,S., Zehavi,I., Dekel,A., Hoffman,Y. & Kolatt,T. Large-scale power spectrum from peculiar velocities via likelihood analysis. Astrophys. J. 486, 21–31 (1997).

    Article  ADS  Google Scholar 

  7. Freudling,W. et al. Large-scale power spectrum and cosmological parameters from SFI peculiar velocities. Astrophys. J. 532, (in the press); also as preprint astro-ph/9904118 (1999).

  8. Carroll,S. M., Press,W. H. & Turner,E. L. The cosmological constant. Annu. Rev. Astron. Astrophys. 30, 499–542 (1992).

    Article  ADS  Google Scholar 

  9. Willick,J. A. et al. Homogeneous velocity–distance data for peculiar velocity analysis. III. The Mark III catalog of galaxy peculiar velocities. Astrophys. J. (suppl.) 109, 333–366 (1997).

    Article  ADS  Google Scholar 

  10. Haynes,M. P. et al. The I-band Tully–Fisher relation for Sc galaxies: optical imaging data. Astron. J. 117, 1668–1687 (1999).

    Article  ADS  Google Scholar 

  11. Haynes,M. P. et al. The I-band Tully–Fisher relation for Sc galaxies: 21 centimeter HI line data. Astron. J. 117, 2039–2051 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Dekel,A. et al. POTENT reconstruction from Mark III velocities. Astrophys. J. 522, 1–38 (1999).

    Article  ADS  Google Scholar 

  13. Dekel,A., Bertchinger,E. & Faber,S. M. Potential, velocity, and density fields from sparse and noisy redshift-distance samples: Method. Astrophys. J. 364, 349–369 (1990).

    Article  ADS  Google Scholar 

  14. Sugiyama,N. Cosmic background anisotropies in cold dark matter cosmology. Astrophys. J. (suppl.) 100, 281–305 (1995).

    Article  ADS  Google Scholar 

  15. Sigad,Y., Eldar,A., Dekel,A., Strauss,M. A. & Yahil,A. IRAS versus POTENT density fields on large scales: biasing and omega. Astrophys. J. 495, 516–532 (1998).

    Article  ADS  Google Scholar 

  16. Eke,V. R., Cole,S., Frenk,C. S. & Henry,P. J. Measuring Ω0 using cluster evolution. Mon. Not. R. Astron. Soc. 298, 1145–1162 (1998).

    Article  ADS  Google Scholar 

  17. Dekel,A. & Lahav,O. Stochastic nonlinear galaxy biasing. Astrophys. J. 520, 24–34 (1999).

    Article  ADS  Google Scholar 

  18. Bunn,E. F. & White,M. The four-year COBE normalization and large-scale structure. Astrophys. J. 480, 6–21 (1997).

    Article  ADS  Google Scholar 

  19. Lahav,O., Lilje,P. B., Primack,J. R. & Rees,M. J. Dynamical effects of the cosmological constant. Mon. Not. R. Astron. Soc. 251, 128–136 (1991).

    Article  ADS  Google Scholar 

  20. Riess,A. G., Press,W. H. & Kirshner,R. P. A precise distance indicator: type Ia supernova multicolour light-curve shape. Astrophys. J. 473, 88–109 (1996).

    Article  ADS  Google Scholar 

  21. Freedman,W. L. in Critical Dialogues in Cosmology (ed. Turok, N.) 92–129 (World Scientific, Singapore, 1997).

    Google Scholar 

  22. Bond,J. R. & Jaffe,A. H. Constraining large scale structure theories with the cosmic background radiation. Phil. Trans. R. Soc. Lond. A (in the press); also as preprint astro-ph/9809043 (1998).

  23. Weinberg,S. The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  24. Chaboyer,B., Demarque,P., Kernan,P. J. & Krauss,L. M. The age of globular clusters in light of Hipparcos: Resolving the age problem? Astrophys. J. 494, 96–110 (1998).

    Article  ADS  Google Scholar 

  25. Efstathiou,G., Bridle,S. L., Lasenby,A. N., Hobson,M. P. & Ellis,R. S. Constraints on ΩΛ and Ωm from distant type Ia supernovae and cosmic microwave background anisotropies. Mon. Not. R. Astron. Soc. 303, L47–L52 (1999).

    Article  ADS  Google Scholar 

  26. Lineweaver,C. H. The cosmic microwave background and observational convergence in the Ωm–ΩΛ plane. Astrophys. J. 505, L69–L73 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Tegmark,M., Eisenstein,D. J., Hu,W. & Kron,R. Cosmic complementarity: probing the acceleration of the universe. Astrophys. J. (submitted); also as preprint astro-ph/9805117 (1998).

  28. White,M. Complementary measures of the mass density and cosmological constant. Astrophys. J. 506, 495–501 (1998).

    Article  ADS  Google Scholar 

  29. Lasenby,A. W., Jones,A. W. & Dabrowski,Y. Observations of the cosmic microwave background and implications for cosmology and large scale structure. Phil. Trans. R. Soc. Lond. A (in the press); also as preprint astro-ph/9810196 (1998).

  30. Zaldarriaga,M., Spergel,D. N. & Seljak,U. Microwave background constraints on cosmological parameters. Astrophys. J. 488, 1–13 (1997).

    Article  ADS  Google Scholar 

Download references


We thank the Mark III and SFI teams, including D. Burstein, S. Courteau, L. N. daCosta, A. Eldar, S. M. Faber, W. Freudling, R. Giovanelli, M. P. Haynes, T. Kolatt, J. J. Salzer, M. A. Strauss, G. Wagner, J. A. Willick, A. Yahil and S. Zaroubi. We thank G. R. Blumenthal and O. Lahav for discussions. This research was supported by US–Israel Binational Science Foundation and Israel Science Foundation grants at the Hebrew University and by DOE and NASA grants at Fermilab.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Idit Zehavi or Avishai Dekel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zehavi, I., Dekel, A. Evidence for a positive cosmological constant from flows of galaxies and distant supernovae. Nature 401, 252–254 (1999).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing