Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Patterning liquid flow on the microscopic scale

Abstract

Microscopic fluidic devices, ranging from surgical endoscopes1 and microelectromechanical systems2 to the commercial ‘lab-on-a-chip’ (ref. 29), allow chemical analysis and synthesis on scales unimaginable a decade ago. These devices transport miniscule quantities of liquid along networked channels. Several techniques have been developed to control small-scale flow, including micromechanical3 and electrohydrodynamic4 pumping, electro-osmotic flow5, electrowetting6,7 and thermocapillary pumping8,9,10. Most of these schemes require micro-machining of interior channels and kilovolt sources to drive electrokinetic flow. Recent work8,9,10 has suggested the use of temperature instead of electric fields to derive droplet movement. Here we demonstrate a simple, alternative technique utilizing temperature gradients to direct microscopic flow on a selectively patterned surface (consisting of alternating stripes of bare and coated SiO2). The liquid is manipulated by simultaneously applying a shear stress at the air–liquid interface and a variable surface energy pattern at the liquid–solid interface. To further this technology, we provide a theoretical estimate of the smallest feature size attainable with this technique.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagrams of the experimental apparatus (a) and the orientation of the patterned Si wafer (b).
Figure 2: Time series of a silicone-oil film spreading on a patterned silicon wafer.
Figure 3: Comparison between the location of the liquid front for spreading on a patterned and an homogeneous surface.

Similar content being viewed by others

References

  1. Menz,W. & Guber,A. Microstructure technologies and their potential in medical applications. Min. Invasive Neurosurgery 37, 21–27 (1994).

    Article  CAS  Google Scholar 

  2. Ho,C. H. & Tai,Y. C. Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu. Rev. Fluid Mech. 30, 579–612 (1998).

    Article  ADS  Google Scholar 

  3. van Lintel,H. T. G. A piezoelectric micropump based on micromachining of silicon. Sensors Actuators 15, 153–167 (1988).

    Article  Google Scholar 

  4. Bart,S. F., Tarrow,L. S., Mehregany,M. & Lang,J. H. Microfabricated electrohydrodynamic pumps. Sensors Actuators A 21–23, 193–197 (1990).

    Article  Google Scholar 

  5. Manz,A. et al. Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems. J. Micromech. Microeng. 4, 257–265 (1995).

    Article  Google Scholar 

  6. Beni,G. & Tenan,M. A. Dynamics of electrowetting displays. J. Appl. Phys. 52, 6011–6015 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Gallardo,B. S. et al. Electrochemical principles for active control of liquids on submillimeter scales. Science 283, 57–89 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Handique,K., Gogoi,B. P., Burke,D. T., Mastrangelo,C. H. & Burns,M. A. Microfluidic flow control using selective hydrophobic patterning. Proc. SPIE 3224, 185–195 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Handique,K., Burke,D. T., Gogoi,B. P., Mastrangelo,C. H. & Burns,M. A. in Technical Digest: Solid State Sensor and Activator Workshop 346–349 (Transducer Research Foundation, Cleveland, Ohio, 1998).

    Google Scholar 

  10. Sammarco,T. S. & Burns,M. A. Thermocapillary pumping of discrete drops in microfabricated analysis devices. Am. Inst. Chem. Eng. J. 45, 350–366 (1999).

    Article  CAS  Google Scholar 

  11. Ludviksson,V. & Lightfoot,E. N. The dynamics of thin liquid films in the presence of surface-tension gradients. Am. Inst. Chem. Eng. J. 17, 1166–1173 (1971).

    Article  CAS  Google Scholar 

  12. Cazabat,A. M., Heslot,F., Troian,S. M. & Carles,P. Fingering instability of thin spreading films driven by temperature gradients. Nature 346, 824–826 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Brzoska,J. B., Brochard-Wyart,F. & Rondelez,F. Exponential growth of fingering instabilities of spreading films under horizontal thermal gradients. Europhys. Lett. 19, 97–102 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Kataoka,D. E. & Troian,S. M. A theoretical study of instabilities at the advancing front of thermally driven coating films. J. Colloid Interface Sci. 192, 350–362 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Kataoka,D. E. & Troian,S. M. Stabilizing the advancing front of thermally driven coating films. J. Colloid Interface Sci. 203, 335–344 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Kataoka,D. E. & Troian,S. M. The transient dynamics and structure of optimal excitations in thermally driven films. Phys. Fluids. (submitted).

  17. Spaid,M. A. & Homsy,G. M. Stability of Newtonian and viscoelastic dynamic contact lines. Phys. Fluids 8, 460–478 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Huppert,H. E. Flow and instability of a viscous current down a slope. Nature 300, 427–429 (1982).

    Article  ADS  Google Scholar 

  19. Silvi,N. & Dussan,E. B. On the rewetting of an inclined solid surface by a liquid. Phys. Fluids 28, 5–7 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Troian,S. M., Herbolzheimer,E., Safran,S. A. & Joanny,J. F. Fingering instabilities of driven spreading films. Europhys. Lett. 10, 25–30 (1989).

    Article  ADS  Google Scholar 

  21. Jerrett,J. M. & deBruyn,J. R. Finger instability of a gravitationally driven contact line. Phys. Fluids A 4, 234–242 (1992).

    Article  ADS  CAS  Google Scholar 

  22. deBruyn,J. R. Growth of fingers at a driven three phase contact line. Phys. Rev. A 46, R4500–R4503 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Melo,F., Joanny,J. F. & Fauve,S. Fingering instability of spinning drops. Phys. Rev. Lett. 63, 1958–1961 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Fraysse,N. & Homsy,G. M. An experimental study of rivulet instabilities in centrifugal spin coating of viscous Newtonian and non-Newtonian fluids. Phys. Fluids 6, 1491–1504 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Kataoka,D. E. The Spreading Behavior of Thermally Driven Liquid Films. Thesis, Princeton Univ. (1999).

    Google Scholar 

  26. Brzoska,J. B., Ben Azouz,I. & Rondelez,F. Silanization of solid substrates: a step toward reproducibility. Langmuir 10, 4367–4373 (1994).

    Article  CAS  Google Scholar 

  27. Wasserman,S. R. et al. The structure of self-assembled monolayers of alkylsiloxanes on silicon: a comparison of results from ellipsometry and low-angle x-ray reflectivity. J. Am. Chem. Soc. 111, 5852–5861 (1989).

    Article  CAS  Google Scholar 

  28. Dulcey,C. L. et al. Deep UV photochemistry of chemisorbed monolayers: patterned coplanar molecular assemblies. Science 252, 551–554 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Freemantle,M. Downsizing chemistry Chem. Eng. News 77(8), 27–36 (1999).

    Google Scholar 

Download references

Acknowledgements

We thank G. D. Barriac for assisting with the photolithographic patterning of the silicon wafers. This work was supported by the National Science Foundation through a graduate fellowship (D.E.K.) and a CAREER award (S.M.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra M. Troian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kataoka, D., Troian, S. Patterning liquid flow on the microscopic scale. Nature 402, 794–797 (1999). https://doi.org/10.1038/45521

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/45521

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing