Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrical spin injection in a ferromagnetic semiconductor heterostructure

Abstract

Conventional electronics is based on the manipulation of electronic charge. An intriguing alternative is the field of ‘spintronics’, wherein the classical manipulation of electronic spin in semiconductor devices gives rise to the possibility of reading and writing non-volatile information through magnetism1,2. Moreover, the ability to preserve coherent spin states in conventional semiconductors3 and quantum dots4 may eventually enable quantum computing in the solid state5,6. Recent studies have shown that optically excited electron spins can retain their coherence over distances exceeding 100 micrometres (ref. 7). But to inject spin-polarized carriers electrically remains a formidable challenge8,9. Here we report the fabrication of all-semiconductor, light-emitting spintronic devices using III–V heterostructures based on gallium arsenide. Electrical spin injection into a non-magnetic semiconductor is achieved (in zero magnetic field) using a p-type ferromagnetic semiconductor10 as the spin polarizer. Spin polarization of the injected holes is determined directly from the polarization of the emitted electroluminescence following the recombination of the holes with the injected (unpolarized) electrons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrical spin injection in an epitaxially grown ferromagnetic semiconductor heterostructure, based on GaAs.
Figure 2: Hysteretic electroluminescence polarization is a direct result of spin injection from the ferromagnetic (Ga,Mn)As layer.
Figure 3: The absence of hysteretic polarization.

Similar content being viewed by others

References

  1. Awschalom,D. D. & Kikkawa,J. M. Electron spin and optical coherence in semiconductors. Phys. Today 52, 33–38 (1999).

    Article  CAS  Google Scholar 

  2. Prinz,G. A. Magnetoelectronics. Science 282, 1660–1663 (1998).

    Article  CAS  Google Scholar 

  3. Kikkawa,J. M. & Awschalom,D. D. Resonant spin amplification in n-type GaAs. Phys. Rev. Lett. 80, 4313–4316 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Gupta,J. A., Awschalom,D. D., Peng,X. & Alivisatos,A. P. Spin coherence in semiconductor quantum dots. Phys. Rev. B 59, 10421–10424 (1999).

    Article  ADS  Google Scholar 

  5. DiVincenzo,D. P. Quantum computation. Science 270, 255–261 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Loss,D. & DiVincenzo,D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Kikkawa,J. M. & Awschalom,D. D. Lateral drag of spin coherence in gallium arsenide. Nature 397, 139–141 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Monzon,F. G. & Roukes,M. L. Spin injection and the local hall effect in InAs quantum wells. J. Mag. Magn. Mater. 198, 632–635 (1999).

    Article  ADS  Google Scholar 

  9. Hammar,P. R. et al. Observation of the spin injection at a ferromagnetic-semiconductor interface. Phys. Rev. Lett. 83, 203–206 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Ohno,H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–955 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Ohno,H. et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363–365 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Matsukara,F., Ohno,H., Shen,A. & Sugawara,Y. Transport properties and origin of ferromagnetism in (Ga,Mn)As. Phys. Rev. B 57, 2037–2040 (1998).

    Article  ADS  Google Scholar 

  13. Hägele,D., Oestreich,M., Rühle,W. W., Nestle,N. & Eberl,K. Spin transport in GaAs. Appl. Phys. Lett. 73, 1580–1582 (1998).

    Article  ADS  Google Scholar 

  14. Beschoten,B. et al. Magnetic circular dichroism studies of carrier-induced ferromagnetism in Ga1-xMnxAs. Phys. Rev. Lett. 83, 3073–3076 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Van Esch,A. et al. Interplay between the magnetic and transport properties in the III-V diluted magnetic semiconductor Ga1-xMnxAs. Phys. Rev. B 56, 13103–13112 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Uenoyama,T. & Sham,L. J. Hole relaxation and luminescence polarization in doped and undoped quantum wells. Phys. Rev. Lett. 64, 3070–3073 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Arata for technical support and D. T. Fuchs and J. M. Kikkawa for critical readings of the manuscript. Work at UCSB is supported by the Air Force Office of Scientific Research, the National Science Foundation through the Center for Quantized Electronic Structures, and the Office of Naval Research. The Japan Society for the Promotion of Science and the Ministry of Education in Japan support work at Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Awschalom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohno, Y., Young, D., Beschoten, B. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999). https://doi.org/10.1038/45509

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/45509

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing