Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle

Abstract

Mounting evidence indicates that the Earth's mantle is chemically heterogeneous. To understand the forms that convection might take in such a mantle, I have conducted laboratory experiments on thermochemical convection in a fluid with stratified density and viscosity. For intermediate density contrasts, a ‘doming’ regime of convection is observed, in which hot domes oscillate vertically through the whole layer while thin tubular plumes rise from their upper surfaces. These plumes could be responsible for the ‘hot spots’ and the domes themselves for the ‘superwells’ observed at the Earth's surface. In the Earth's mantle, the doming regime should occur for density contrasts less than about 1%. Moreover, quantitative scaling laws derived from the experiments show that the mantle might have evolved from strictly stratified convection 4 Gyr ago to doming today. Thermochemical convection can thus reconcile the survival of geochemically distinct reservoirs with the small amplitude of present-day density heterogeneities inferred from seismology and mineral physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Snapshots and vertical temperature structure for the different regimes of convection.
Figure 2: Different convective regimes as a function of the buoyancy ratio Rρ and the viscosity ratio γ.
Figure 3: Doming regime.
Figure 4: Critical density contrast Δρ/ρ calculated from equation (2) as a function of the temperature difference ΔT driving convection.
Figure 5: Volumetric entrainment rate of a cylindrical plume as a function of (γRρ)-1.

Similar content being viewed by others

References

  1. Olson,P., Silver,P. G. & Carlson,R. W. The large scale structure of convection in the Earth's mantle. Nature 344, 209–215 (1990).

    Article  ADS  Google Scholar 

  2. Dziewonski,A. M. & Anderson,D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  3. Jackson,I. Elasticity, composition and temperature of the Earth's lower mantle: a reappraisal. Geophys. J. Int. 134, 291–311 (1998).

    Article  ADS  Google Scholar 

  4. Bina,C. R. in Ultra-high Pressure Mineralogy (ed. Hemley, R. J.) 205–239 (Reviews in Mineralogy Vol. 37, Mineralogical Society of America, Washington, DC, 1998).

    Book  Google Scholar 

  5. Zindler,A. & Hart,S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Lay,T., Williams,Q. & Garnero,E. J. The core–mantle boundary layer and deep Earth dynamics. Nature 392, 461–467 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Van der Hilst,R. D., Widiyantoro,S. & Engdahl,E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Forte,A. M. & Woodward,R. L. Seismic-geodynamics constraints on three-dimensional structure, vertical flow, and heat transfer in the mantle. J. Geophys. Res. 102, 17981–17994 (1997).

    Article  ADS  Google Scholar 

  9. Wilson,J. T. Evidence from islands on the spreading of the ocean floor. Can. J. Phys. 41, 863–868 (1963).

    Article  ADS  Google Scholar 

  10. Morgan,W. J. Plate motions and deep mantle convection. Nature 230, 42–43 (1971).

    Article  ADS  Google Scholar 

  11. Richards,M. A., Duncan,R. A. & Courtillot,V. E. Flood basalts and hot-spot tracks: Plume heads and tails. Science 246, 103–107 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Sleep,N. H. Hotspots and mantle plumes: some phenomenology. J. Geophys. Res. 95, 6715–6736 (1990).

    Article  ADS  Google Scholar 

  13. Loper,D. E. & Stacey,F. D. Mantle plumes and the periodicity of magnetic field reversals. Geophys. Res. Lett. 13, 1525–1528 (1986).

    Article  ADS  Google Scholar 

  14. Larson,R. L. & Olson,P. Mantle plumes control magnetic reversal frequency. Earth Planet. Sci. Lett. 107, 437–447 (1991).

    Article  ADS  Google Scholar 

  15. McNutt,M. K. Superswells. Rev. Geophys. 36, 211–244 (1998).

    Article  ADS  Google Scholar 

  16. Nyblade,A. A. & Robinson,S. W. The African superswell. Geophys. Res. Lett. 21, 765–768 (1994).

    Article  ADS  Google Scholar 

  17. McNutt,M. K. & Fisher,K. M. in Seamounts, Islands and Atolls (eds Keating, B. H. et al.) 25–34 (Geophys. Monogr. Ser. 43, American Geophysical Union, Washington DC, 1987).

    Google Scholar 

  18. Masters,G., Johnson,S., Laske,G. & Bolton,H. A shear-velocity model of the mantle. Phil. Trans. R. Soc. Lond. A 354, 1385–1410 (1996).

    Article  ADS  Google Scholar 

  19. Hart,S. R. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753–757 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Cazenave,A. & Thoraval,C. Mantle dynamics constrained by degree 6 surface topography, seismic tomography and geoid: Inference on the origin of the South Pacific Superswell. Earth Planet. Sci. Lett. 122, 207–219 (1994).

    Article  ADS  Google Scholar 

  21. Vinnik,L., Chevrot,S. & Montagner,J.-P. Evidence for a stagnant plume in the transition zone. Geophys. Res. Lett. 24, 1007–1010 (1997).

    Article  ADS  Google Scholar 

  22. Larson,R. L. Geological consequences of superplumes. Geology 19, 547–550 (1991).

    Article  ADS  Google Scholar 

  23. Bercovici,D., Schubert,G. & Glatzmaier,G. A. Three-dimensional spherical models of convection in the Earth's mantle. Science 244, 950–955 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Albers,M. & Christensen,U. R. The excess temperature of plumes rising from the core-mantle boundary. Geophys. Res. Lett. 23, 3567–3570 (1996).

    Article  ADS  Google Scholar 

  25. Farnetani,C. G. Excess temperature of mantle plumes: the role of chemical stratification across D″. Geophys. Res. Lett. 24, 1583–1586 (1997).

    Article  ADS  CAS  Google Scholar 

  26. Hoffman,N. R. A. & McKenzie,D. P. The destruction of geochemical heterogeneities by differential motions during mantle convection. Geophys. J. R. Astron. Soc. 82, 163–206 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Christensen,U. Mixing by time-dependent convection. Earth Planet. Sci. Lett. 95, 382–394 (1989).

    Article  ADS  Google Scholar 

  28. Kellogg,L. H. Chaotic mixing in the Earth's mantle. Adv. Geophys. 34, 1–33 (1993).

    Article  ADS  Google Scholar 

  29. Gurnis,M. & Davies,G. F. The effect of depth-dependent viscosity on convective mixing in the mantle and the possible survival of primitive mantle. Geophys. Res. Lett. 13, 541–544 (1986).

    Article  ADS  Google Scholar 

  30. Spence,D. A., Ockendon,J. R., Wilmott,P., Turcotte,D. L. & Kellogg,L. H. Convective mixing in the mantle: the role of viscosity differences. Geophys. J. 95, 79–86 (1988).

    Article  ADS  Google Scholar 

  31. Manga,M. Mixing of heterogeneities in the mantle—Effects of viscosity differences. Geophys. Res. Lett. 23, 403–406 (1996).

    Article  ADS  Google Scholar 

  32. Olson,P. An experimental approach to thermal convection in a two-layered mantle. J. Geophys. Res. 89, 11293–11301 (1984).

    Article  ADS  Google Scholar 

  33. van Keken,P. E. & Ballentine,C. J. Whole-mantle versus layered mantle convection and the role of a high-viscosity lower mantle in terrestrial volatile evolution. Earth Planet. Sci. Lett. 156, 19–32 (1998).

    Article  ADS  CAS  Google Scholar 

  34. Davaille,A. Two-layer thermal convection in miscible viscous fluids. J. Fluid Mech. 379, 223–253 (1999).

    Article  ADS  CAS  Google Scholar 

  35. Richter,F. M. & Johnson,C. E. Stability of a chemically layered mantle. J. Geophys. Res. 79, 1635–1639 (1974).

    Article  ADS  CAS  Google Scholar 

  36. Richter,F. M. & McKenzie,D. P. On some consequences and possible causes of layered convection. J. Geophys. Res. 86, 6133–6124 (1981).

    Article  ADS  Google Scholar 

  37. Christensen,U. Instability in a hot boundary layer and initiation of thermochemical plumes. Ann. Geophys. 2, 311–320 (1984).

    ADS  Google Scholar 

  38. Tackley,P. J. in The Core-Mantle Boundary Region (eds Gwinis, M. et al.) 231–255 (AGU Monogr, American Geophysical Union, Washington DC, 1998).

    Book  Google Scholar 

  39. Olson,P. & Kincaid,C. Experiments on the interaction of thermal convection and compositional layering at the base of the mantle. J. Geophys. Res. 96, 4347–4354 (1991).

    Article  ADS  Google Scholar 

  40. Karato,S. & Wu,P. Rheology of the upper mantle: a synthesis. Science 260, 771–778 (1993).

    Article  ADS  CAS  Google Scholar 

  41. Chopelas,A. & Boehler,R. Thermal expansivity in the lower mantle. Geophys. Res. Lett. 19, 1983–1986 (1992).

    Article  ADS  Google Scholar 

  42. Kellogg,L. H., Hager,B. H. & van der Hilst,R. D. Compositional stratification in the deep mantle. Science 283, 1881–1884 (1999).

    Article  ADS  CAS  Google Scholar 

  43. Boelher,R. Temperatures in the Earth's core from melting point measurements of iron at high static pressures. Nature 363, 534–536 (1993).

    Article  ADS  Google Scholar 

  44. Allègre,C. J. & Lewin,E. Isotopic systems and stirring times of the earth's mantle. Earth Planet. Sci. Lett. 136, 629–646 (1995).

    Article  ADS  Google Scholar 

  45. Sleep,N. H. Gradual entrainment of a chemical layer at the base of the mantle by overlying convection. Geophys. J. 95, 437–447 (1988).

    Article  ADS  Google Scholar 

  46. Montague,N. L., Kellogg,L. H. & Manga,M. High-Rayleigh number thermochemical models of a dense boundary layer in D″. Geophys. Res. Lett. 25, 2345–2348 (1998).

    Article  ADS  CAS  Google Scholar 

  47. Girard,F. & Davaille,A. Dynamics of an heterogeneous layer at the base of the mantle: an experimental approach. Eos 79, 617 (1998).

    Google Scholar 

Download references

Acknowledgements

I thank C. Allègre, C. Jaupart, K. Turekian, P. Molnar, N. Ribe and G. Veronis for discussions; G. Bienfait, F. Girard, A. Lee, W. Phelps and W. Sacco for help in the laboratory; and M. McNutt, M. Manga and P. Tackley for comments on the manuscript. Part of this work was done at the Department of Geology and Geophysics at Yale University, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Davaille.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davaille, A. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402, 756–760 (1999). https://doi.org/10.1038/45461

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/45461

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing