Early planet formation as a trigger for further planet formation

Article metrics


Recent discoveries of extrasolar giant planets at small orbital radii1,2, or having significant orbital eccentricities, suggest that the planets interacted with the disks of dust and gas from which they and the central stars formed3,4,5,6. Here we show that if a gas-giant planet reaches a mass of 4–5 jovian masses sufficiently early, when the protoplanetary disk is still massive, an otherwise stable disk will fragment into additional planetary bodies. This process of catastrophic planet formation could account for the apparent difference1 in the distribution of the masses of massive planets and brown dwarfs around other stars, and the existence of young stars that appear to have dissipated their disks at a very early age7. Subsequent gravitational interactions5,6,8,9 between the first planet to form and the additional planets could lead to planetary systems comprising a small number of massive planets in eccentric orbits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The evolution of the disk surface density, with and without an embedded massive planet.
Figure 2: The gravitational potential fluctuations in the disk at angle ϕ at the inner Lindblad resonance where fragmentation first occurs.


  1. 1

    Mayor,M., Udry,S. & Queloz,D. in The Tenth Cambridge Workshop on Cool Stars, Stellar Systems and the Sun (eds Donahue, R. A. & Bookbinder, J. A.) 77– 87 (ASP Conf. Ser. 154, San Francisco, 1998).

  2. 2

    Marcy,G. W. & Butler,R. P. Detection of extrasolar giant planets. Annu. Rev. Astron. Astrophys. 36, 57– 98 (1998).

  3. 3

    Lin,D. N. C., Bodenheimer,P. & Richardson, D. C. Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606–607 (1996).

  4. 4

    Murray,N., Hansen,B., Holman,M. & Tremaine,S. Migrating planets. Science 279, 69–72 (1998).

  5. 5

    Rasio,F. A. & Ford,E. B. Dynamical instabilities and the formation of extrasolar planetary systems. Science 274, 954–965 (1996).

  6. 6

    Weidenschilling,S. J. & Marzari,F. Gravitational scattering as a possible origin for giant planets at small stellar distances. Nature 384, 619–621 (1996).

  7. 7

    Strom,S. E. Initial frequency, lifetime and evolution of YSO disks. Rev. Mex. Astron. Astrophys. Ser. Conf. 1, 317– 328 (1995).

  8. 8

    Gladman,B. Dynamics of systems and two close planets. Icarus 106 , 247–263 (1993).

  9. 9

    Lin,D. N. C. & Ida,S. On the origin of massive eccentric planets. Astrophys. J. 477, 781– 791 (1997).

  10. 10

    Artymowicz,P. & Lubow,S. H. Mass flow through gaps in circumbinary disks. Astrophys. J. 467, L77– L80 (1996).

  11. 11

    Takeuchi,T., Miyama,S. M. & Lin,D. N. C. Gap formation in protoplanetary disks. Astrophys. J. 460, 832–847 (1996).

  12. 12

    Lin,D. N. C. & Papaloizou,J. On the structure of circumbinary accretion discs and the tidal evolution of commensurable satellites. Mon. Not. R. Astron. Soc. 188, 191– 201 (1979).

  13. 13

    Kley,W. Mass flow and accretion through gaps in accretion discs. Mon. Not. R. Astron. Soc. 303, 696–710 (1999).

  14. 14

    Bryden,G., Chen,X., Lin,D. N. C., Nelson,R. P. & Papaloizou, J. C. B. Tidally induced gap formation in protostellar disks: Gap clearing and suppression of protoplanetary growth. Astrophys. J. 514, 344–367 (1999).

  15. 15

    Safronov,V. S. Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets (Izdatel'stvo Nauka, Moscow, 1969). (English translation for NASA and NSF by Israel Program for Scientific Translations, Jerusalem, NASA-TT-F-677, 1972).

  16. 16

    Boss,A. P. Evolution of the solar nebula IV. Giant gaseous protoplanet formation. Astrophys. J. 503, 923–937 (1998).

  17. 17

    Osterloh,M. & Beckwith,S. V. W. Millimeter-wave continuum measurements of young stars. Astrophys. J. 439, 288–302 (1995).

  18. 18

    Hayashi,C., Nakazawa,K. & Nakagawa, Y. in Protostars and planets II (eds Black, D. C. & Matthews, M. S.) 1100–1153 (Univ. Arizona Press, Tucson, 1985).

  19. 19

    Balbus,S. A., Hawley,J. F. & Stone, J. M. Nonlinear stability, hydrodynamical turbulence, and transport in disks. Astrophys. J. 467, 76 –86 (1996).

  20. 20

    Larson,R. B. Gravitational torques and star formation. Mon. Not. R. Astron. Soc. 206, 197–207 (1984).

  21. 21

    Lin,D. N. C. & Pringle,J. E. The formation and initial evolution of protostellar disks. Astrophys. J. 358, 515–524 (1990).

  22. 22

    Toomre,A. On the gravitational stability of a disk of stars. Astrophys. J. 139, 1217–1238 (1964).

  23. 23

    Laughlin,G. & Bodenheimer,P. Nonaxisymmetric evolution in protostellar disks. Astrophys. J. 436, 335 –354 (1994).

  24. 24

    Nelson,A. F., Benz,W., Adams,F. C. & Arnett,D. Dynamics of circumstellar disks. Astrophys. J. 502, 342– 371 (1998).

  25. 25

    Lissauer,J. J. Timescales for planetary accretion and the structure of the protoplanetary disk. Icarus 69, 249–265 (1987).

  26. 26

    Pollack,J. B. et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62– 85 (1996).

  27. 27

    Shakura,N. I. & Sunyaev,R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

  28. 28

    Benz,W. in The Numerical Modelling of Nonlinear Stellar Pulsations (ed. Buchler, J. R.) 269–287 (Kluwer Academic, Dordrecht, 1990).

  29. 29

    Monaghan,J. J. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992).

  30. 30

    Barnes,J. & Hut,P. A hierarchical O(N log N) force calculation algorithm. Nature 324, 446 (1986).

Download references


We thank N. Murray for helpful discussions, and N. Wilson for maintaining the required computational resources.

Author information

Correspondence to Philip J. Armitage.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Armitage, P., Hansen, B. Early planet formation as a trigger for further planet formation. Nature 402, 633–635 (1999) doi:10.1038/45179

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.