Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand

Abstract

Natural killer (NK) cell function is regulated by NK receptors that interact with MHC class I (MHC-I) molecules on target cells. The murine NK receptor Ly49A inhibits NK cell activity by interacting with H-2Dd through its C-type-lectin-like NK receptor domain. Here we report the crystal structure of the complex between the Ly49A NK receptor domain and unglycosylated H-2Dd. The Ly49A dimer interacts extensively with two H-2Dd molecules at distinct sites. At one interface, a single Ly49A subunit contacts one side of the MHC-I peptide-binding platform, presenting an open cavity towards the conserved glycosylation site on the H-2Dd α2 domain. At a second, larger interface, the Ly49A dimer binds in a region overlapping the CD8-binding site. The smaller interface probably represents the interaction between Ly49A on the NK cell and MHC-I on the target cell, whereas the larger one suggests an interaction between Ly49A and MHC-I on the NK cell itself. Both Ly49A binding sites on MHC-I are spatially distinct from that of the T-cell receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the Ly49A/H-2Dd complex and the interaction sites.
Figure 2: Structure of Ly49A NKD, and comparison with other members of the C-type lectin-like superfamily.
Figure 3: Structure-based sequence alignment of NKDs for selected NK cell receptors.
Figure 4: Binding of lymphocyte receptors to MHC-I.
Figure 5: The putative carbohydrate-binding pocket at the Ly49A/H-2Dd interface.

Similar content being viewed by others

References

  1. Lanier,L. L. NK cell receptors. Annu. Rev. Immunol. 16, 359–393 (1998).

    Article  CAS  Google Scholar 

  2. Yokoyama,W. M. in Fundamental Immunology (ed. Paul, W. E.) 575–603 (Lippincott-Raven, Philadelphia, 1999).

    Google Scholar 

  3. Long,E. O. Regulation of immune responses through inhibitory receptors. Annu. Rev. Immunol. 17, 875–904 (1999).

    Article  CAS  Google Scholar 

  4. Kärre,K., Ljunggren,H. G., Piontek,G. & Kiessling,R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defense strategy. Nature 319, 675–678 (1986).

    Article  ADS  Google Scholar 

  5. Ljunggren,H. G. & Kärre,K. In search of the “missing self”: MHC molecules and NK cell recognition. Immunol. Today 11, 237–244 (1990).

    Article  CAS  Google Scholar 

  6. Fan,Q. R. et al. Structure of the inhibitory receptor for human natural killer cells resembles haematopoietic receptors. Nature 389, 96–100 (1997).

    Article  CAS  ADS  Google Scholar 

  7. Snyder,G. A., Brooks,A. G. & Sun,P. D. Crystal structure of the HLA-Cw3 allotype-specific killer cell inhibitory receptor KIR2DL2. Proc. Natl Acad. Sci. USA 96, 3864–3869 (1999).

    Article  CAS  ADS  Google Scholar 

  8. Maenaka,K., Juji,T., Stuart,D. I. & Jones,E. Y. Crystal structure of the human p58 killer cell inhibitory receptor (KIR2DL3) specific for HLA-Cw3-related MHC class I. Structure 7, 391–398 (1999).

    Article  CAS  Google Scholar 

  9. Boyington,J. C. et al. Structure of CD94 reveals a novel C-type lectin fold: implications for the NK cell-associated CD94/NKG2 receptors. Immunity 10, 75–82 (1999).

    Article  CAS  Google Scholar 

  10. Garcia,K. C., Teyton,L. & Wilson,I. A. Structural basis of T cell recognition. Annu. Rev. Immunol. 17, 369–397 (1999).

    Article  CAS  Google Scholar 

  11. Natarajan,K. et al. Interaction of the NK cell inhibitory receptor Ly49A with H-2Dd: identification of a site distinct from the TCR site. Immunity 11, 591–601 (1999).

    Article  CAS  Google Scholar 

  12. Li,H., Natarajan,K., Malchiodi,E. L., Margulies,D. H. & Mariuzza,R. A. Three-dimensional structure of H-2Dd complexed with an immunodominant peptide from human immunodeficiency virus envelope glycoprotein 120. J. Mol. Biol. 283, 179–191 (1998).

    Article  CAS  Google Scholar 

  13. Weis,W. I., Taylor,M. E. & Drickamer,K. The C-type lectin superfamily in the immune system. Immunol. Rev. 163, 19–34 (1998).

    Article  CAS  Google Scholar 

  14. Weis,W. I., Kahn,R., Fourme,R., Drickamer,K. & Hendrickson,W. A. Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science 254, 1608–1615 (1991).

    Article  CAS  ADS  Google Scholar 

  15. Poget,S. F. et al. The structure of a tunicate C-type lectin from Polyandrocarpa misakiensis complexed with D-galactose. J. Mol. Biol. 290, 867–879 (1999).

    Article  CAS  Google Scholar 

  16. Ng,K. K.-S., Park-Snyder,S. & Weis,W. I. Ca2+-dependent structural changes in C-type mannose-binding proteins. Biochemistry 37, 17965–17976 (1998).

    Article  CAS  Google Scholar 

  17. Weis,W. I. & Drickamer,K. Trimeric structure of a C-type mannose-binding protein. Structure 2, 1227–1240 (1994).

    Article  CAS  Google Scholar 

  18. Sheriff,S., Chan,C. Y. & Ezekowitz,R. A. B. Human mannose-binding protein carbohydrate recognition domain trimerizes through a triple α-helical coiled-coil. Nature Struct. Biol. 1, 789–794 (1994).

    Article  CAS  Google Scholar 

  19. Graves,B. J. et al. Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains. Nature 367, 532–538 (1994).

    Article  CAS  ADS  Google Scholar 

  20. Lo Conte,L., Chothia,C. & Janin,J. The atomic structure of protein–protein recognition sites. J. Mol. Biol. 285, 2177–2198 (1999).

    Article  CAS  Google Scholar 

  21. Wang,J.-H. et al. Structure of a heterophilic adhesion complex between the human CD2 and CD58 (LFA-3) counterreceptors. Cell 97, 791–803 (1999).

    Article  CAS  Google Scholar 

  22. Lawrence,M. C. & Colman,P. M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993).

    Article  CAS  Google Scholar 

  23. Karlhofer,F. M., Ribaudo,R. K. & Yokoyama,W. M. MHC class I alloantigen specificity of Ly-49+ IL-2 activated natural killer cells. Nature 358, 66–70 (1992).

    Article  CAS  ADS  Google Scholar 

  24. Gao,G. F. et al. Crystal structure of the complex between human CD8αα and HLA-A2. Nature 387, 630–634 (1997).

    Article  CAS  ADS  Google Scholar 

  25. Kern,P. S. et al. Structural basis of CD8 coreceptor function revealed by crystallographic analysis of a murine CD8αα ectodomain fragment in complex with H-2Kb. Immunity 9, 519–530 (1998).

    Article  CAS  Google Scholar 

  26. Achour,A. et al. The crystal structure of H-2Dd MHC class I complexed with the HIV-1-derived peptide P18-I10 at 2.4 Å resolution: implications for T cell and NK cell recognition. Immunity 9, 199–208 (1998).

    Article  CAS  Google Scholar 

  27. Correa,I. & Raulet,D. H. Binding of diverse peptides to MHC class I molecules inhibits target cell lysis by activated natural killer cells. Immunity 2, 61–71 (1995).

    Article  CAS  Google Scholar 

  28. Orihuela,M., Margulies,D. H. & Yokoyam,W. M. The natural killer cell receptor Ly49A recognizes a peptide-induced conformational determinant on its major histocompatibility complex class I ligand. Proc. Natl Acad. Sci. USA 93, 11792–11797 (1996).

    Article  CAS  ADS  Google Scholar 

  29. Matsumoto,N., Ribaudo,R. K., Abastado,J. P., Margulies,D. H. & Yokoyama,W. M. The lectin-like NK cell receptor Ly-49A recognizes a carbohydrate-independent epitope on its MHC class I ligand. Immunity 8, 245–254 (1998).

    Article  CAS  Google Scholar 

  30. Sundbäck,J. et al. The α2 domain of H-2Dd restricts the allelic specificity of the murine NK cell inhibitory receptor Ly-49A. J. Immunol. 160, 5971–5978 (1998).

    PubMed  Google Scholar 

  31. Karlhofer,F. M., Ribaudo,R. K. & Yokoyama,W. M. MHC class I alloantigen specificity of Ly-49+ IL-2 activated natural killer cells. Nature 358, 66–70 (1992).

    Article  CAS  ADS  Google Scholar 

  32. Brennan,J., Mahon,G., Mager,D. L., Jefferies,W. A. & Takei,F. Recognition of class I major histocompatibility complex molecules by Ly-49: specificities and domain interactions. J. Exp. Med. 183, 1553–1559 (1996).

    Article  CAS  Google Scholar 

  33. Daniels,B. F., Nakamura,M. C., Rosen,S. D., Yokoyama,W. M. & Seaman,W. E. Ly49A, a receptor for H-2Dd, has a functional carbohydrate recognition domain. Immunity 1, 785–792 (1994).

    Article  CAS  Google Scholar 

  34. Brennan,J., Takei,F., Wong,S. & Mager,D. L. Carbohydrate recognition by a natural killer cell receptor, Ly-49C. J. Biol. Chem. 270, 9691–9694 (1995).

    Article  CAS  Google Scholar 

  35. Chang,C. S. & Kane,K. P. Evidence for sulphate modification of H-2Dd on N-linked carbohydrate(s): possible involvement in Ly-49A interaction. J. Immunol. 160, 4367–4374 (1998).

    CAS  PubMed  Google Scholar 

  36. Lian,R. H., Freeman,J. D., Mager,D. L. & Takei,F. Role of conserved glycosylation site unique to murine class I MHC in recognition by Ly-49 NK cell receptor. J. Immunol. 161, 2031–2036 (1998).

    Google Scholar 

  37. Hanke,T. et al. Direct assessment of MHC class I binding by seven Ly49 inhibitory NK cell receptors. Immunity 11, 67–77 (1999).

    Article  CAS  Google Scholar 

  38. Madden,D. R. The three-dimensional structure of peptide-MHC complexes. Annu. Rev. Immunol. 13, 587–622 (1995).

    Article  CAS  Google Scholar 

  39. Kåse,A., Johansson,M. H., Olsson-Alheim,M. Y., Kärre,K. & Höglund,P. External and internal calibration of the MHC class I-specific receptor Ly49A on murine natural killer cells. J. Immunol. 161, 6133–6138 (1998).

    PubMed  Google Scholar 

  40. Andersson,M. et al. MHC class I mosaic mice reveal insights into control of Ly49C inhibitory receptor expression in NK cells. J. Immunol. 161, 6475–6479 (1998).

    CAS  PubMed  Google Scholar 

  41. Franksson,L. et al. Peptide dependency and selectivity of the NK cell inhibitory receptor Ly-49C. Eur. J. Immunol. 29, 2748–2758 (1999).

    Article  CAS  Google Scholar 

  42. Valés-Gómez,M., Reyburn,H. T., Erskine,R. A., López-Botet,M. & Strominger,J. L. Kinetics and peptide dependency on the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E. EMBO J. 18, 4250–4260 (1999).

    Article  Google Scholar 

  43. Chung,D. H. et al. NK and CTL recognition of a single chain H-2Dd molecule: distinct sites of H-2Dd interact with NK and T cell receptors. J. Immunol. 163, 3699–3708 (1999).

    CAS  PubMed  Google Scholar 

  44. Bendelac,A., Rivera,M. N., Park,S.-H. & Roark,J. H. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol. 15, 535–562 (1997).

    Article  CAS  Google Scholar 

  45. Otwinowski,Z. & Minor,W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–327 (1997).

    Article  CAS  Google Scholar 

  46. Navaza,J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  47. Brünger,A. T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  48. Jones,T. A., Zou,J. Y., Cowan,S. W. & Kjeldgaard,M. Improved methods for building models in electron density maps and the location of errors in those models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  49. Esnouf,R. M. An extensively modified version of Molscript that includes greatly enhanced colouring capabilities. J. Mol. Graph. 15, 133–138 (1997).

    Google Scholar 

  50. Merrit,E. A. & Bacon,D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. Yang and B. A. Fields for their help with data collection, L. Boyd and R. Carey for assistance with protein expression and characterization, M. Garfield for protein sequencing, and J. C. Boyington and P. D. Sun for providing coordinates of the CD94 structure before release. We thank W. Yokoyama for encouragement and for critical comments on the manuscript. We also thank the staff at the Advanced Photon Source, Argonne National Laboratory, which is operated by the Department of Energy, Office of Basic Energy Sciences. This work was supported, in part, by grants from the National Institutes of Health and the National Multiple Sclerosis Society (R.A.M.) and the Spanish “Comision Interministerial de Ciencia y Tecnologia” (J.T.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David H. Margulies or Roy A. Mariuzza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tormo, J., Natarajan, K., Margulies, D. et al. Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Nature 402, 623–631 (1999). https://doi.org/10.1038/45170

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/45170

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing