Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Characterization of the androgen receptor in a benign prostate tissue-derived human prostate epithelial cell line: RC-165N/human telomerase reverse transcriptase

Abstract

The majority of prostate epithelial cell lines stably expressing wild-type (wt) or mutant (mt) androgen receptor (AR) are derived from metastatic prostate cancers. Therefore, the wt AR-expressing RC-165N/human telomerase reverse transcriptase (hTERT) cell line derived from the benign prostate tissue of an African-American patient provides a unique opportunity to assess the functional status of AR in a cellular context not studied before. Although androgen-induced expression of known androgen responsive genes such as PMEPA1, and NDRG1 was observed in RC-165N/hTERT, this cell line expresses prostate-specific antigen (PSA) at significantly lower levels. Chromatin immunoprecipitation assay revealed androgen-dependent binding of AR to androgen response elements of PSA, PMEPA1 and NDRG1 genes. Similarities, as well as differences were noted in the expression of androgen responsive genes between RC-165N/hTERT and LNCaP cells. Comprehensive evaluations of AR functions in RC-165N/hTERT cells suggest that whereas some features of known AR functions are maintained in this benign prostatic tissue-derived cell line, other AR functions are not retained. Objective evaluations of similar cell lines will lead to the understanding of AR functions in prostate growth and differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C et al. Cancer statistics, 2006. CA Cancer J Clin 2006; 56: 106–130.

    Article  Google Scholar 

  2. Gu Y, Kim KH, Ko D, Srivastava S, Moul JW, McLeod DG et al. Androgen and androgen receptor antagonist responsive primary African-American benign prostate epithelial cell line. Anticancer Res 2005; 25: 1–8.

    CAS  PubMed  Google Scholar 

  3. Gu Y, Li H, Miki J, Kim KH, Furusato B, Sesterhenn IA et al. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines. Exp Cell Res 2006; 312: 831–843.

    Article  CAS  Google Scholar 

  4. Koochekpour S, Maresh GA, Katner A, Parker-Johnson K, Lee TJ, Hebert FE et al. Establishment and characterization of a primary androgen-responsive African-American prostate cancer cell line, E006AA. Prostate 2004; 60: 141–152.

    Article  Google Scholar 

  5. Sobel RE, Sadar MD . Cell lines used in prostate cancer research: a compendium of old and new lines – part 2. J Urol 2005; 173: 360–372.

    Article  CAS  Google Scholar 

  6. Sobel RE, Sadar MD . Cell lines used in prostate cancer research: a compendium of old and new lines – part 1. J Urol 2005; 173: 342–359.

    Article  CAS  Google Scholar 

  7. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A et al. Cancer statistics, 2005. CA Cancer J Clin 2005; 55: 10–30.

    Article  Google Scholar 

  8. Navone NM, Olive M, Ozen M, Davis R, Troncoso P, Tu SM et al. Establishment of two human prostate cancer cell lines derived from a single bone metastasis. Clin Cancer Res 1997; 3: 2493–2500.

    CAS  Google Scholar 

  9. Drukier AK, Ossetrova N, Schors E, Brown LR, Tomaszewski J, Sainsbury R et al. Ultra-sensitive immunoassays using multi-photon-detection in diagnostic proteomics of blood. J Proteome Res 2005; 4: 2375–2378.

    Article  CAS  Google Scholar 

  10. Kleiner O, Price DA, Ossetrova N, Osetrov S, Volkovitsky P, Drukier AK et al. Ultra-high sensitivity multi-photon detection imaging in proteomics analyses. Proteomics 2005; 5: 2322–2330.

    Article  CAS  Google Scholar 

  11. Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D . Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell 2000; 103: 667–678.

    Article  CAS  Google Scholar 

  12. Masuda K, Werner T, Maheshwari S, Frisch M, Oh S, Petrovics G et al. Androgen receptor binding sites identified by a GREF_GATA Model. J Mol Biol 2005; 353: 763–771.

    Article  CAS  Google Scholar 

  13. Orlando V . Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 2000; 25: 99–104.

    Article  CAS  Google Scholar 

  14. Rozen S, Skaletsky HJ . Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds). Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press: Totowa, NJ, 2000, pp 365–386.

    Google Scholar 

  15. Petrovics G, Liu A, Shaheduzzaman S, Furasato B, Sun C, Chen Y et al. Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 2005; 24: 3847–3852.

    Article  CAS  Google Scholar 

  16. Segawa T, Nau ME, Xu LL, Chilukuri RN, Makarem M, Zhang W et al. Androgen-induced expression of endoplasmic reticulum (ER) stress response genes in prostate cancer cells. Oncogene 2002; 21: 8749–8758.

    Article  CAS  Google Scholar 

  17. Israeli RS, Powell CT, Corr JG, Fair WR, Heston WD . Expression of the prostate-specific membrane antigen. Cancer Res 1994; 54: 1807–1811.

    CAS  Google Scholar 

  18. Ulrix W, Swinnen JV, Heyns W, Verhoeven G . The differentiation-related gene 1, Drg1, is markedly upregulated by androgens in LNCaP prostatic adenocarcinoma cells. FEBS Lett 1999; 455: 23–26.

    Article  CAS  Google Scholar 

  19. Gao N, Zhang J, Rao MA, Case TC, Mirosevich J, Wang Y et al. The role of hepatocyte nuclear factor-3 alpha (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genes. Mol Endocrinol 2003; 17: 1484–1507.

    Article  CAS  Google Scholar 

  20. Levedakou EN, Strohmeyer TG, Effert PJ, Liu ET . Expression of the matrix Gla protein in urogenital malignancies. Int J Cancer 1992; 52: 534–537.

    Article  CAS  Google Scholar 

  21. Konduri SD, Tasiou A, Chandrasekar N, Rao JS . Overexpression of tissue factor pathway inhibitor-2 (TFPI-2), decreases the invasiveness of prostate cancer cells in vitro. Int J Oncol 2001; 18: 127–131.

    CAS  Google Scholar 

  22. Chen C, Lewis SK, Voigt L, Fitzpatrick A, Plymate SR, Weiss NS . Prostate carcinoma incidence in relation to prediagnostic circulating levels of insulin-like growth factor I, insulin-like growth factor binding protein 3, and insulin. Cancer 2005; 103: 76–84.

    Article  CAS  Google Scholar 

  23. Lopez JB, Sahabudin RM, Chin LP . Are plasma insulin-like growth factor I (IGF-I) and IGF-binding protein 3 (IGFBP-3) useful markers of prostate cancer? Int J Biol Markers 2004; 19: 164–167.

    Article  CAS  Google Scholar 

  24. Miyata Y, Sakai H, Kanda S, Igawa T, Hayashi T, Kanetake H . Expression of insulin-like growth factor binding protein-3 before and after neoadjuvant hormonal therapy in human prostate cancer tissues: correlation with histopathologic effects and biochemical recurrence. Urology 2004; 63: 1184–1190.

    Article  Google Scholar 

  25. Li H, Kantoff PW, Giovannucci E, Leitzmann MF, Gaziano JM, Stampfer MJ et al. Manganese superoxide dismutase polymorphism, prediagnostic antioxidant status, and risk of clinical significant prostate cancer. Cancer Res 2005; 65: 2498–2504.

    Article  CAS  Google Scholar 

  26. Venkataraman S, Jiang X, Weydert C, Zhang Y, Zhang HJ, Goswami PC et al. Manganese superoxide dismutase overexpression inhibits the growth of androgen-independent prostate cancer cells. Oncogene 2005; 24: 77–89.

    Article  CAS  Google Scholar 

  27. Cao J, Chiarelli C, Kozarekar P, Adler HL . Membrane type 1-matrix metalloproteinase promotes human prostate cancer invasion and metastasis. Thromb Haemost 2005; 93: 770–778.

    Article  CAS  Google Scholar 

  28. Culig Z, Klocker H, Bartsch G, Steiner H, Hobisch A . Androgen receptors in prostate cancer. J Urol 2003; 170: 1363–1369.

    Article  CAS  Google Scholar 

  29. Isaacs JT, Isaacs WB . Androgen receptor outwits prostate cancer drugs. Nat Med 2004; 10: 26–27.

    Article  CAS  Google Scholar 

  30. Pinter O, Pajor L, Molnar J, Marki A, Falkay G . The role of androgen receptors in the dynamic process of prostate cancer: their analytical determination in biopsy material. In Vivo 2004; 18: 809–812.

    CAS  PubMed  Google Scholar 

  31. Lee C, Sutkowski DM, Sensibar JA, Zelner D, Kim I, Amsel I et al. Regulation of proliferation and production of prostate-specific antigen in androgen-sensitive prostatic cancer cells LNCaP, by dihydrotestosterone. Endocrinology 1995; 136: 796–803.

    Article  CAS  Google Scholar 

  32. Wright Jr GL, Grob BM, Haley C, Grossman K, Newhall K, Petrylak D et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 1996; 48: 326–334.

    Article  Google Scholar 

  33. Asatiani E, Huang WX, Wang A, Rodriguez Ortner E, Cavalli LR, Haddad BR et al. Deletion, methylation, and expression of the NKX3.1 suppressor gene in primary human prostate cancer. Cancer Res 2005; 65: 1164–1173.

    Article  CAS  Google Scholar 

  34. Bowen C, Bubendorf L, Voeller HJ, Slack R, Willi N, Sauter G et al. Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Cancer Res 2000; 60: 6111–6115.

    CAS  PubMed  Google Scholar 

  35. He WW, Sciavolino PJ, Wing J, Augustus M, Hudson P, Meissner PS et al. A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 1997; 43: 69–77.

    Article  CAS  Google Scholar 

  36. Steadman DJ, Giuffrida D, Gelmann EP . DNA-binding sequence of the human prostate-specific homeodomain protein NKX3.1. Nucleic Acids Res 2000; 28: 2389–2395.

    Article  CAS  Google Scholar 

  37. Martin JL, Pattison SL . Insulin-like growth factor binding protein-3 is regulated by dihydrotestosterone and stimulates deoxyribonucleic acid synthesis and cell proliferation in LNCaP prostate carcinoma cells. Endocrinology 2000; 141: 2401–2409.

    Article  CAS  Google Scholar 

  38. Meehan KL, Sadar MD . Quantitative profiling of LNCaP prostate cancer cells using isotope-coded affinity tags and mass spectrometry. Proteomics 2004; 4: 1116–1134.

    Article  CAS  Google Scholar 

  39. Xu LL, Su YP, Labiche R, Segawa T, Shanmugam N, McLeod DG et al. Quantitative expression profile of androgen-regulated genes in prostate cancer cells and identification of prostate-specific genes. Int J Cancer 2001; 92: 322–328.

    Article  CAS  Google Scholar 

  40. Sun C, Shi Y, Xu LL, Nageswararao C, Davis LD, Segawa T et al. Androgen receptor mutation (T877A) promotes prostate cancer cell growth and cell survival. Oncogene 2006; 25: 3905–3913.

    Article  CAS  Google Scholar 

  41. Swinnen JV, Heemers H, van de Sande T, de Schrijver E, Brusselmans K, Heyns W et al. Androgens, lipogenesis and prostate cancer. J Steroid Biochem Mol Biol 2004; 92: 273–279.

    Article  CAS  Google Scholar 

  42. Wallace HM, Fraser AV . Inhibitors of polyamine metabolism: review article. Amino Acids 2004; 26: 353–365.

    Article  CAS  Google Scholar 

  43. Denmeade SR, Sokoll LJ, Dalrymple S, Rosen DM, Gady AM, Bruzek D et al. Dissociation between androgen responsiveness for malignant growth vs expression of prostate specific differentiation markers PSA, hK2, and PSMA in human prostate cancer models. Prostate 2003; 54: 249–257.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful for the generous support of Dr David G McLeod, Director of the Center for Prostate Disease Research. We acknowledge the excellent technical support of Ms Soyon Oh and Ms Jennifer Regalia. Also, we are thankful for Dr Ossetrova from BioTraces Inc. for performing PSA detection with the Super-ELISA system. This research was supported by the Center for Prostate Disease Research Program through the Henry M Jackson Foundation for the Advancement of Military Medicine under contract number HU001-04-C-1502 (2004) with the Uniformed Services University. The opinions and assertions contained herein are the private views of the authors and are not to be considered as reflecting the views of the Henry M Jackson Foundation for the Advancement of Military Medicine or the US Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J S Rhim or S Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KH., Dobi, A., Shaheduzzaman, S. et al. Characterization of the androgen receptor in a benign prostate tissue-derived human prostate epithelial cell line: RC-165N/human telomerase reverse transcriptase. Prostate Cancer Prostatic Dis 10, 30–38 (2007). https://doi.org/10.1038/sj.pcan.4500915

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500915

Keywords

This article is cited by

Search

Quick links