Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Notch signalling and voltage-gated Na+ channel activity in human prostate cancer cells: independent modulation of in vitro motility

Abstract

This study tested the possible functional relationship of two signalling mechanisms shown previously to be involved in human prostate cancer (PCa), Notch and voltage-gated sodium channel. Notch1 and Notch2 were differentially expressed in PCa cell lines of varying metastatic potential (LNCaP, PC-3, PC-3M) in comparison to a normal prostate cell line (PNT2), whereas Notch3 and Notch4 were not expressed. The Notch ligand Jagged1, but not Jagged2, was increased in all cell lines, whereas the Notch downstream target Deltex was not expressed. In comparison to the LNCaP cell line, Hes1, another downstream target, showed elevated expression in the metastatic PC-3 and PC-3M cells and promoted lateral motility. In contrast, the Notch ligand Delta-like1 (Dll1) levels were higher in LNCaP compared with PC-3 and PC-3M cells. Importantly, decreasing Dll1 expression increased the lateral motility of PC-3 cells, whereas blocking voltage-gated Na+ channel activity with tetrodotoxin decreased motility. However, the effect of Dll1 was independent of Notch signalling through Hes1 and voltage-gated Na+ channel expression/activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Grönberg H . Prostate cancer epidemiology. Lancet 2003; 361: 859–864.

    Article  Google Scholar 

  2. Parker SL, Tong T, Bolden S, Wingo PA . Cancer statistics, 1996. Cancer J Clin 1996; 146: 5–27.

    Article  Google Scholar 

  3. Woolf SH . Screening for prostate cancer with prostate-specific antigen. An examination of the evidence. N Engl J Med 1995; 333: 1401–1405.

    Article  CAS  Google Scholar 

  4. Grimes JA, Fraser SP, Stephens GJ, Downing JE, Laniado ME, Foster CS et al. Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Lett 1995; 369: 290–294.

    Article  CAS  Google Scholar 

  5. Laniado ME, Lalani EN, Fraser SP, Grimes JA, Bhangal G, Djamgoz MBA et al. Expression and functional analysis of voltage-activated Na+ channels in human prostate cancer cell lines and their contribution to invasion in vitro. Am J Pathol 1997; 150: 1213–1221.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fraser SP, Ding Y, Liu A, Foster CS, Djamgoz MBA . Tetrodotoxin suppresses morphological enhancement of the metastatic MAT-LyLu rat prostate cancer cell line. Cell Tissue Res 1999; 295: 505–512.

    Article  CAS  Google Scholar 

  7. Mycielska ME, Fraser SP, Szatkowski M, Djamgoz MBA . Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: II. Secretory membrane activity. J Cell Physiol 2003; 195: 461–469.

    Article  CAS  Google Scholar 

  8. Djamgoz MBA, Mycielska M, Madeja Z, Fraser SP, Korohoda W . Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltage gated Na+ channel activity. J Cell Sci 2001; 114: 2697–2705.

    CAS  PubMed  Google Scholar 

  9. Smith P, Rhodes NP, Shortland AP, Fraser SP, Djamgoz MBA, Ke Y et al. Sodium channel protein expression enhances the invasiveness of rat and human prostate cancer cells. FEBS Lett 1998; 13: 19–24.

    Article  Google Scholar 

  10. Fraser SP, Salvador V, Manning EA, Mizal J, Altun S, Raza M et al. Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol 2003; 195: 479–487.

    Article  CAS  Google Scholar 

  11. Mycielska ME, Dye J, Stepen E, Djamgoz MBA . Substrate influences voltage-gated Na+ channel expression in strongly metastatic rat prostate cancer cell line. J Physiol 2004; 557P: C85.

    Google Scholar 

  12. Diss JKJ, Stewart D, Pani F, Foster CS, Walker MM, Patel A et al. A potential novel marker for human prostate cancer: voltage-gated sodium channel expression in vivo. Prostate Cancer Prostatic Dis 2005; 8: 266–273.

    Article  CAS  Google Scholar 

  13. Wang XD, Shou J, Wong P, French DM, Gao WQ . Notch1-expressing cells are indispensable for prostatic branching morphogenesis during development and re-growth following castration and androgen replacement. J Biol Chem 2004; 279: 24733–24744.

    Article  CAS  Google Scholar 

  14. Allenspach EJ, Maillard I, Aster JC, Pear WS . Notch signaling in cancer. Cancer Biol Ther 2002; 1: 466–476.

    Article  Google Scholar 

  15. Radtke F, Raj K . The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 2003; 3: 756–767.

    Article  CAS  Google Scholar 

  16. Belandia B, Powell SM, Garcia-Pedrero JM, Walker MM, Bevan CL, Parker MG . Hey1, a mediator of notch signaling, is an androgen receptor corepressor. Mol Cell Biol 2005; 25: 1425–1436.

    Article  CAS  Google Scholar 

  17. Shou J, Ross S, Koeppen H, de Sauvage FJ, Gao WQ . Dynamics of notch expression during murine prostate development and tumorigenesis. Cancer Res 2001; 61: 7291–7297.

    CAS  PubMed  Google Scholar 

  18. Santagata S, Demichelis F, Riva A, Varambally S, Hofer MD, Kutok JL et al. JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res 2004; 64: 6854–6857.

    Article  CAS  Google Scholar 

  19. Zayzafoon M, Abdulkadir SA, McDonald JM . Notch signaling and ERK activation are important for the osteomimetic properties of prostate cancer bone metastatic cell lines. J Biol Chem 2004; 279: 3662–3670.

    Article  CAS  Google Scholar 

  20. di Sant’Agnese PA, de Mesy Jensen KL . Neuroendocrine differentiation in prostatic carcinoma. Hum Pathol 1987; 18: 849–856.

    Article  Google Scholar 

  21. Cox ME, Deeble PD, Lakhani S, Parsons SJ . Acquisition of neuroendocrine characteristics by prostate tumor cells is reversible: implications for prostate cancer progression. Cancer Res 1999; 59: 3821–3830.

    CAS  PubMed  Google Scholar 

  22. Hu Y, Ippolito JE, Garabedian EM, Humphrey PA, Gordon JI . Molecular characterization of a metastatic neuroendocrine cell cancer arising in the prostates of transgenic mice. J Biol Chem 2002; 277: 44462–44474.

    Article  CAS  Google Scholar 

  23. Casarosa S, Fode C, Guillemot F . Mash1 regulates neurogenesis in the ventral telencephalon. Development 1999; 126: 525–534.

    CAS  PubMed  Google Scholar 

  24. Kageyama R, Ishibashi M, Takebayashi K, Tomita K . bHLH transcription factors and mammalian neuronal differentiation. Int J Biochem Cell Biol 1997; 29: 1389–1399.

    Article  CAS  Google Scholar 

  25. Yamamoto N, Yamamoto S, Inagaki F, Kawaichi M, Fukamizu A, Kishi N et al. Role of Deltex-1 as a transcriptional regulator downstream of the Notch receptor. J Biol Chem 2001; 276: 45031–45040.

    Article  CAS  Google Scholar 

  26. Ito T, Udaka N, Yazawa T, Okudela K, Hayashi H, Sudo T et al. Basic helix–loop–helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development 2000; 127: 3913–3921.

    CAS  PubMed  Google Scholar 

  27. Artavanis-Tsakonas S, Rand MD, Lake RJ . Notch signaling: cell fate control and signal integration in development. Science 1999; 284: 770–776.

    Article  CAS  Google Scholar 

  28. Fehon RG, Kooh PJ, Rebay I, Regan CL, Xu T, Muskavitch MA et al. Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell 1990; 61: 523–534.

    Article  CAS  Google Scholar 

  29. Lowell S, Watt FM . Delta regulates keratinocyte spreading and motility independently of differentiation. Mech Dev 2001; 107: 133–140.

    Article  CAS  Google Scholar 

  30. Six EM, Ndiaye D, Sauer G, Laabi Y, Athman R, Cumano A et al. The notch ligand Delta1 recruits Dlg1 at cell–cell contacts and regulates cell migration. J Biol Chem 2004; 279: 55818–55826.

    Article  CAS  Google Scholar 

  31. Berthon P, Cussenot O, Hopwood L, Leduc A, Maitland NJ . Functional expression of Sv40 in normal human prostatic epithelial and fibroblastic cells – differentiation pattern of nontumorigenic cell-lines. Int J Oncol 1995; 6: 333–343.

    CAS  PubMed  Google Scholar 

  32. Cussenot O, Berthon P, Berger R, Mowszowicz I, Faille A, Hojman F et al. Immortalization of human adult normal prostatic epithelial cells by liposomes containing large T-SV40 gene. J Urol 1991; 146: 881–886.

    Article  CAS  Google Scholar 

  33. Cussenot O, Berthon P, Cochand-Priollet B, Maitland NJ, Le Duc A . Immunocytochemical comparison of cultured normal epithelial prostatic cells with prostatic tissue sections. Exp Cell Res 1994; 214: 83–92.

    Article  CAS  Google Scholar 

  34. Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM et al. LNCaP model of human prostatic carcinoma. Cancer Res 1983; 43: 1809–1818.

    CAS  PubMed  Google Scholar 

  35. Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW . Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 1979; 17: 16–23.

    CAS  Google Scholar 

  36. Kozlowski JM, Fidler IJ, Campbell D, Xu ZL, Kaighn ME, Hart IR . Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res 1984; 44: 3522–3529.

    CAS  Google Scholar 

  37. Diss JK, Archer SN, Hirano J, Fraser SP, Djamgoz MBA . Expression profiles of voltage-gated Na(+) channel alpha-subunit genes in rat and human prostate cancer cell lines. Prostate 2000; 48: 165–178.

    Article  Google Scholar 

  38. Chtanova T, Kemp RA, Sutherland AP, Ronchese F, Mackay CR . Gene microarrays reveal extensive differential gene expression in both CD4(+) and CD8(+) type 1 and type 2 T cells. J Immunol 2001; 167: 3057–3063.

    Article  CAS  Google Scholar 

  39. Grimes JA, Djamgoz MBA . Electrophysiological characterization of voltage-gated Na+ current expressed in the highly metastatic Mat-LyLu cell line of rat prostate cancer. J Cell Physiol 1998; 175: 50–58.

    Article  CAS  Google Scholar 

  40. Fraser SP, Grimes JA, Djamgoz MBA . Effects of voltage-gated ion channel modulators on rat prostatic cancer cell proliferation: comparison of strongly and weakly metastatic cell lines. Prostate 2000; 44: 61–76.

    Article  CAS  Google Scholar 

  41. Berezovska O, Jack C, McLean P, Aster JC, Hicks C, Xia W et al. Aspartate mutations in presenilin and gamma-secretase inhibitors both impair notch1 proteolysis and nuclear translocation with relative preservation of notch1 signaling. J Neurochem 2000; 75: 583–593.

    Article  CAS  Google Scholar 

  42. Heitzler P, Bourouis M, Ruel L, Carteret C, Simpson P . Genes of the Enhancer of split and achaete-scute complexes are required for a regulatory loop between Notch and Delta during lateral signalling in Drosophila. Development 1996; 122: 161–171.

    CAS  PubMed  Google Scholar 

  43. Yang J, Fizazi K, Peleg S, Sikes CR, Raymond AK, Jamal N et al. Prostate cancer cells induce osteoblast differentiation through a Cbfa1-dependent pathway. Cancer Res 2001; 61: 5652–5659.

    CAS  PubMed  Google Scholar 

  44. Ascano JM, Beverly LJ, Capobianco AJ . The C-terminal PDZ-ligand of JAGGED1 is essential for cellular transformation. J Biol Chem 2003; 278: 8771–8779.

    Article  CAS  Google Scholar 

  45. Bright RK, Vocke CD, Emmert-Buck MR, Duray PH, Solomon D, Fetsch P et al. Generation and genetic characterization of immortal human prostate epithelial cell lines derived from primary cancer specimens. Cancer Res 1997; 57: 995–1002.

    CAS  Google Scholar 

  46. Strom A, Arai N, Leers J, Gustafsson JA . The Hairy and Enhancer of Split homologue-1 (HES-1) mediates the proliferative effect of 17beta-estradiol on breast cancer cell lines. Oncogene 2000; 19: 5951–5953.

    Article  CAS  Google Scholar 

  47. Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 2005; 9: 617–628.

    Article  CAS  Google Scholar 

  48. Zhang JH, Gibney GT, Xia Y . Effect of prolonged hypoxia on Na+ channel mRNA subtypes in the developing rat cortex. Mol Brain Res 2001; 91: 154–158.

    Article  CAS  Google Scholar 

  49. Mason HA, Rakowiecki SM, Raftopoulou M, Nery S, Huang Y, Gridley T et al. Notch signaling coordinates the patterning of striatal compartments. Development 2005; 132: 4247–4258.

    Article  CAS  Google Scholar 

  50. Dalrymple S, Antony L, Xu Y, Uzgare AR, Arnold JT, Savaugeot J et al. Role of notch-1 and E-cadherin in the differential response to calcium in culturing normal versus malignant prostate cells. Cancer Res 2005; 65: 9269–9279.

    Article  CAS  Google Scholar 

  51. Fidler IJ . Critical determinants of metastasis. Semin Cancer Biol 2002; 12: 89–96.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Pro Cancer Research Fund (MBAD, SPF) and NKRF (MJD). We thank James KJ Diss for useful discussion and Professor Norman Maitland (supported by Yorkshire Cancer Research) for the PNT2 cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S P Fraser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scorey, N., Fraser, S., Patel, P. et al. Notch signalling and voltage-gated Na+ channel activity in human prostate cancer cells: independent modulation of in vitro motility. Prostate Cancer Prostatic Dis 9, 399–406 (2006). https://doi.org/10.1038/sj.pcan.4500894

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500894

Keywords

This article is cited by

Search

Quick links