Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Targeting epitopes in prostate-specific membrane antigen for antibody therapy of prostate cancer

Abstract

Prostate-specific membrane antigen (PSMA) is a target for immunotherapy of prostate cancer. It has been shown that antibodies against PSMA inhibited the in vivo growth of LNCaP tumor. In the present study, monoclonal antibodies against four epitopes in PSMA were raised. MAb 24.4E6 (IgG1), specific for the epitope (residues 638–657) in PSMA, significantly reduced the growth rate of established LNCaP tumor in SCID mice. Mouse IgG was detected in the tumor of mice treated with 24.4E6, but not with an unrelated MAb. These results suggest that this epitope may be the main target in PSMA for antibody therapy of prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Ghosh A, Heston WD . Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem 2004; 91: 528–539.

    Article  CAS  Google Scholar 

  2. Barrett AJ . Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB). Enzyme Nomenclature. Recommendations 1992. Supplement 4: corrections and additions (1997). Eur J Biochem 1997; 250: 1–6.

    Article  CAS  Google Scholar 

  3. Carter RE, Feldman AR, Coyle JT . Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. Proc Natl Acad Sci USA 1996; 93: 749–753.

    Article  CAS  Google Scholar 

  4. Luthi-Carter R et al. Molecular characterization of human brain N-acetylated alpha-linked acidic dipeptidase (NAALADase). J Pharmacol Exp Ther 1998; 286: 1020–1025.

    PubMed  CAS  Google Scholar 

  5. Israeli RS et al. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res 1993; 53: 227–230.

    PubMed  CAS  Google Scholar 

  6. Su SL et al. Alternatively spliced variants of prostate-specific membrane antigen RNA: ratio of expression as a potential measurement of progression. Cancer Res 1995; 55: 1441–1443.

    PubMed  CAS  Google Scholar 

  7. Schmittgen TD et al. Expression of prostate specific membrane antigen and three alternatively spliced variants of PSMA in prostate cancer patients. Int J Cancer 2003; 107: 323–329.

    Article  CAS  Google Scholar 

  8. Liu H et al. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res 1997; 57: 3629–3634.

    PubMed  CAS  Google Scholar 

  9. Chang SS et al. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res 1999; 59: 3192–3198.

    PubMed  CAS  Google Scholar 

  10. Kuratsukuri K et al. Inhibition of prostate-specific membrane antigen (PSMA)-positive tumor growth by vaccination with either full-length or the C-terminal end of PSMA. Intl J Cancer 2002; 102: 244–249.

    Article  CAS  Google Scholar 

  11. Davis MI et al. Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase. Pro Natl Acad Sci USA 2005; 102: 5981–5986.

    Article  CAS  Google Scholar 

  12. Dakappagari NK et al. Prevention of mammary tumors with a chimeric HER-2 B-cell epitope peptide vaccine. Cancer Res 2000; 60: 3782–3789.

    PubMed  CAS  Google Scholar 

  13. Kaumaya PTP et al. ‘De novo’ engineering of peptide immunogenic and antigenic determinants as potential vaccines. In: Basava C, Anantharamaiah GM (eds). Peptides: Design, Synthesis and Biological Activity. Birkhauser: Boston, 1994, pp 133–164.

    Chapter  Google Scholar 

  14. Land SJ et al. Purification and characterization of a rat hepatic acetyltransferase that can metabolize aromatic amine derivatives. Carcinogenesis 1993; 14: 1441–1449.

    Article  CAS  Google Scholar 

  15. Bumke MA, Neri D . Affinity measurements by band shift and competition ELISA. In: Kontermann R, Dubel S (eds). Antibody Engineering. Springer-Verlag: New York, 2001, pp 385–396.

    Chapter  Google Scholar 

  16. Soos G et al. Comparative intraosseal growth of human prostate cancer cell lines LNCaP and PC-3 in the nude mouse. Anticancer Res 1997; 17: 4253–4258.

    PubMed  CAS  Google Scholar 

  17. Slusher BS et al. Rat brain N-acetylated alpha-linked acidic dipeptidase activity. Purification and immunologic characterization. J Biol Chem 1990; 265: 21297–21301.

    PubMed  CAS  Google Scholar 

  18. Bacich DJ et al. Cloning, expression, genomic localization, and enzymatic activities of the mouse homolog of prostate-specific membrane antigen/NAALADase/folate hydrolase. Mamm Genome 2001; 12: 117–123.

    Article  CAS  Google Scholar 

  19. Horoszewicz JS, Kawinski E, Murphy GP . Monoclonal antibodies to a new antigenic marker in epithelial cells and serum of prostatic cancer patients. Anticancer Res 1987; 7: 927–936.

    PubMed  CAS  Google Scholar 

  20. Sokoloff RL et al. A dual-monoclonal sandwich assay for prostate-specific membrane antigen: levels in tissues, seminal fluid and urine. Prostate 2000; 43: 150–157.

    Article  CAS  Google Scholar 

  21. Grauer LS et al. Identification, purification, and subcellular localization of prostate-specific membrane antigen PSM' protein in the LNCaP prostatic carcinoma cell line. Cancer Res 1998; 58: 4787–4789.

    PubMed  CAS  Google Scholar 

  22. Crawford ED et al. Hormone refractory prostate cancer. Urol 1999; 54: S1–S7.

    Article  Google Scholar 

  23. Sanda MG et al. Molecular characterization of defective antigen presentation in human prostate cancer. J Natl Cancer Inst 1995; 87: 280–285.

    Article  CAS  Google Scholar 

  24. Blades RA et al. Loss of class I expression in prostate cancer: implications for immunotherapy. Urol 1995; 46: 681–687.

    Article  CAS  Google Scholar 

  25. Bander N et al. MHC class I and II expression in prostate carcinoma and modulation by interferon-alpha and -gamma. Prostate 1997; 33: 233–239.

    Article  CAS  Google Scholar 

  26. Bander NH et al. Targeted systemic therapy of prostate cancer with a monoclonal antibody to prostate-specific membrane antigen. Seminars Oncol 2003; 30: 667–676.

    Article  CAS  Google Scholar 

  27. Bander NH et al. Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J Urol 2003; 170: 1717–1721.

    Article  CAS  Google Scholar 

  28. Henry MD et al. A prostate-specific membrane antigen-targeted monoclonal antibody-chemotherapeutic conjugate designed for the treatment of prostate cancer. Cancer Res 2004; 64: 7995–8001.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G P Haas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinoshita, Y., Kuratsukuri, K., Newman, N. et al. Targeting epitopes in prostate-specific membrane antigen for antibody therapy of prostate cancer. Prostate Cancer Prostatic Dis 8, 359–363 (2005). https://doi.org/10.1038/sj.pcan.4500835

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500835

Keywords

This article is cited by

Search

Quick links