Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Asynchronous replication of imprinted genes is established in the gametes and maintained during development

Abstract

Genomic imprinting is characterized by allele-specific expression of multiple genes within large chromosomal domains1 that undergo DNA replication asynchronously during S phase2,3. Here we show, using both fluorescence in situ hybridization analysis and S-phase fractionation techniques, that differential replication timing is associated with imprinted genes in a variety of cell types, and is already present in the pre-implantation embryo soon after fertilization. This pattern is erased before meiosis in the germ line, and parent-specific replication timing is then reset in late gametogenesis in both the male and female. Thus, asynchronous replication timing is established in the gametes and maintained throughout development, indicating that it may function as a primary epigenetic marker for distinguishing between the parental alleles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of asynchronous timing by S-phase fractionation.
Figure 2: Replication timing in the early embryo.
Figure 3: Replication timing during gametogenesis.
Figure 4: Maintenance of replication timing.

Similar content being viewed by others

References

  1. Razin,A. & Cedar,H. DNA methylation and genomic imprinting. Cell 77, 473–476 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Kitsberg,D. et al. Allele-specific replication timing of imprinted gene regions. Nature 364, 459–463 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Knoll,J. H. M., Cheng,S.-D. & Lalande,M. Allele specificity of DNA replication timing in the Angelman/Prader-Willi syndrome imprinted chromosomal region. Nature Genet. 6, 41–46 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Selig,S., Okumura,K., Ward,D. C. & Cedar,H. Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J. 11, 1217–1225 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chess,A., Simon,I., Cedar,H. & Axel,R. Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823–834 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. LaSalle,J. M. & Lalande,M. Domain organization of allele-specific replication within the GABRB3 gene cluster requires a biparental 15q11-13 contribution. Nature Genet. 9, 386–394 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Greally,J. M. et al. The mouse H19 locus mediates a transition between imprinted and non-imprinted DNA replication patterns. Hum. Mol. Genet. 7, 91–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Tenzen,T. et al. Precise switching of DNA replication timing in the GC content transition area in the human major histocompatibility complex. Mol. Cell. Biol. 17, 4043–4050 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hansen,R. S., Canfield,T. KI., Lamb,M. M., Gartler,S. M. & Laird,C. D. Association of fragile X syndrome with delayed replication of the FMR1 gene. Cell 73, 1403–1409 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Kawame,H., Gartler,S. M. & Hansen,R. S. Allele-specific replication timing in imprinted domains: absence of asynchrony at several loci. Hum. Mol. Genet. 4, 2287–2293 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Windham,L. Q. & Jones,P. A. Expression of H19 does not influence the timing of replication of the Igf2/H19 imprinted region. Dev. Genet. 20, 29–35 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Wines,M. E., Tiffany,A. M. & Holdener,B. C. Physical localization of the mouse aryl hydrocarbon receptor nuclear translocator-2 (Arnt2) gene within the c112K deletion. Genomics 51, 223–232 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. McCarrey,J. R. in Cellular and Molecular Biology of the Testis 58–89 (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  14. Bix,M. & Locksley,R. M. Independent and epigenetic regulation of the interleukin-4 alleles in CD4+ T Cells. Science 281, 1352–1354 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Riviere,I., Sunshine,M. J. & Littman,D. R. Regulation of IL-4 expression by activation of individual alleles. Immunity 9, 217–228 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Gabriel,J. M. et al. A model system to study genomic imprinting of human genes. Proc. Natl Acad. Sci. USA 95, 14857–14862 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shemer,R. & Razin,A. in Epigenetic Mechanisms of Gene Regulation (eds Russo, V. E. A., Martienssen, R. A. & Riggs, A. D.) 215–229 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1996).

    Google Scholar 

  18. Shemer,R. et al. Dynamic methylation adjustment and counting as part of imprinting mechanisms. Proc. Natl Acad. Sci. USA 93, 6371–6376 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Birger,Y., Shemer,R., Perk,J. & Razin,A. The imprinting box of the mouse Igf2r gene. Nature 397, 84–88 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Szabo,P. & Mann,J. R. Biallelic expression of imprinted genes in the mouse germ line: implications for erasure, establishment and mechanisms of genomic imprinting. Genes Dev. 9, 1857–1868 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Davis,T. L., Trasler,J. M., Moss,S. B., Yang, Bartolomei, M. S. Acquisition of the H19 methylation imprint occurs differentially on the parental alleles during spermatogenesis. Genomics 58, 18–28 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Caspary,T., Cleary,M. A., Baker,C. C., Guan,X.-J. & Tilghman,S. M. Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 gene cluster. Mol. Cell. Biol. 18, 3466–3474 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sutcliffe,J. S. et al. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nature Genet. 8, 52–58 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Leighton,P. A., Ingram,R. S., Eggenschwiler,J., Efstratiadis,A. & Tilghman,S. M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375, 34–39 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Gunaratne,P. H., Nakao,M., Ledbetter,D. H., Sutcliffe,J. S. & Chinault,A. C. Tissue-specific and allele-specific replication timing control in the imprinted human Prader-Willi syndrome region. Genes Dev. 9, 808–920 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Hogan,B., Beddington,R., Costantini,F. & Lacy,E. Manipulating the Mouse Embryo. A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, 1994).

    Google Scholar 

  27. McCarrey,J. R., Hsu,K. C., Eddy,E. M., Klevecz,R. R. & Bolen,J. L. Isolation of viable mouse primordial germ cells by antibody-directed flow sorting. J. Exp. Zool. 242, 107–111 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Bellve,A. et al. Spermatogenic cells of the prepuberal mouse, isolation and morphological characterization. J. Cell Biol. 74, 68–85 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harper,J. C. et al. Identification of the sex of human preimplantation embryos in two hours using an improved spreading method and fluorescent in situ hybridisation using directly labelled probes. Hum. Reprod. 9, 721–724 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Dunnett,C. W. A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 50, 1096–1121 (1955).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We thank T. Jakubowicz and E. Rand for their help in preparing the manuscript and figures, B. C. Holdener for providing the C112κ mice and an appropriate probe for detecting this deletion, R. Nicholls for providing hybrid cell lines and W. Reik for providing the parthenogenetic ES cell line. We also thank H. Friedlander-Klar for help with the statistical analysis. This work was supported by grants from the US–Israel Binational Science foundation (H.C. and J.M.) the Israel Academy of sciences (H.C.) and the Israel Cancer Research Fund (H.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Cedar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, I., Tenzen, T., Reubinoff, B. et al. Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature 401, 929–932 (1999). https://doi.org/10.1038/44866

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/44866

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing