Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling


Studies of the actin-based motility of the intracellular pathogens Listeria monocytogenes and Shigella flexneri have provided important insight into the events occurring at the leading edges of motile cells1,2,3,4,5. Like the bacteria Listeria and Shigella, vaccinia virus, a relative of the causative agent of smallpox, uses actin-based motility to spread between cells6. In contrast to Listeria or Shigella, the actin-based motility of vaccinia is dependent on an unknown phosphotyrosine protein, but the underlying mechanism remains obscure7. Here we show that phosphorylation of tyrosine 112 in the viral protein A36R by Src-family kinases is essential for the actin-based motility of vaccinia. Tyrosine phosphorylation of A36R results in a direct interaction with the adaptor protein Nck8 and the recruitment of the Ena/VASP family member N-WASP9 to the site of actin assembly. We also show that Nck and N-WASP are essential for the actin-based motility of vaccinia virus. We suggest that vaccinia virus spreads by mimicking the signalling pathways that are normally involved in actin polymerization at the plasma membrane.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Vaccinia A36R protein is tyrosine phosphorylated.
Figure 2: Tyrosine phosphorylation of A36R is essential for vaccinia actin tail formation.
Figure 3: Src-family kinases mediate actin tail formation of vaccinia virus.
Figure 4: Nck and N-WASP are essential for vaccinia actin tail formation.


  1. 1

    Dramsi,S. & Cossart,P. Intracellular pathogens and the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 14, 137–166 (1998).

    CAS  PubMed  Google Scholar 

  2. 2

    Finlay,B. B. & Cossart,P. Exploitation of mammalian host cell functions by bacterial pathogens. Science 276, 718–725 (1997).

    CAS  PubMed  Google Scholar 

  3. 3

    Welch,M. D., Iwamatsu,A. & Mitchison,T. J. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385, 265–269 (1997).

    ADS  CAS  Google Scholar 

  4. 4

    Welch,M. D., Rosenblatt,J., Skole,J., Portnoy,D. A. & Mitchison,T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105–108 (1998).

    ADS  CAS  Google Scholar 

  5. 5

    Mullins,D. R., Heuser,J. A. & Pollard,T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998).

    ADS  CAS  Google Scholar 

  6. 6

    Cudmore,S., Cossart,P., Griffiths,G. & Way,M. Actin-based motility of vaccinia virus. Nature 378, 636–638 (1995).

    ADS  CAS  Google Scholar 

  7. 7

    Frischknecht,F. et al. Tyrosine phosphorylation is required for actin based motility of vaccinia but not Listeria or Shigella. Curr. Biol. 9, 89–92 (1999).

    CAS  PubMed  Google Scholar 

  8. 8

    McCarty,J. H. The Nck SH2/SH3 adaptor protein: a regulator of multiple intracellular signal transduction events. BioEssays 20, 913–921 (1998).

    CAS  PubMed  Google Scholar 

  9. 9

    Miki,H., Minura,K. & Takenawa,T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J. 15, 5326–5335 (1996).

    PubMed  PubMed Central  Google Scholar 

  10. 10

    Wu,H. & Parsons,J. T. Cortactin, an 80/85-kilodalton pp60sc substrate, is a filamentous actin-binding protein enriched in the cell cortex. J. Cell Biol. 120, 1417–1426 (1993).

    CAS  PubMed  Google Scholar 

  11. 11

    Dehio,C., Prevost,M. C. & Sansonetti,P. J. Invasion of epithelial cells by Shigella flexneri induces tyrosine phosphorylation of cortactin by a pp60c-src-mediated signalling pathway. EMBO J. 14, 2471–2482 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Sanderson,C. M., Frischknecht,F., Way,M., Hollinshead,M. & Smith,G. L. Roles of vaccinia virus EEV-specific proteins in intracellular actin tail formation and low pH-induced cell-cell fusion. J. Gen. Virol. 79, 1415–1425 (1998).

    CAS  PubMed  Google Scholar 

  13. 13

    Röttger,S., Frischknecht,F., Reckmann,I., Smith,G. L. & Way,M. Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation. J. Virol. 73, 2863–2875 (1999).

    PubMed  PubMed Central  Google Scholar 

  14. 14

    Wolffe,E. J., Weisberg,A. S. & Moss,B. Role for the vaccinia virus A36R outer envelope protein in the formation of virus-tipped actin-containing microvilli and cell-to-cell virus spread. Virology 25, 20–26 (1998).

    Google Scholar 

  15. 15

    Songyang,Z. & Cantley,L. C. Recognition and specificity in protein tyrosine kinase-mediated signalling. Trends Biochem. Sci. 20, 470–475 (1995).

    CAS  PubMed  Google Scholar 

  16. 16

    Hanke,J. H. et al. Discovery of a novel, potent, and src family selective tyrosine kinase inhibitor. J. Biol. Chem. 271, 695–701 (1996).

    CAS  PubMed  Google Scholar 

  17. 17

    Rivero-Lezcano,O. M. & Marcilla,A., Sameshima,J. H. & Robbins,K. C. Wiskott-Aldrich syndrome protein physically associates with Nck through Src3 homology domains. Mol. Cell. Biol 15, 5725–5731 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Snapper,S. B. & Rosen,F. S. The Wiskott-Aldrich syndrome protein (WASP): roles in signalling and cytoskeletal organization. Annu. Rev. Immunol. 17, 905–929 (1999).

    CAS  Google Scholar 

  19. 19

    Machesky,L. M. & Insall,R. H. Scar1 and the related Wiskott-Aldrich syndrome protein WASP regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998).

    CAS  PubMed  Google Scholar 

  20. 20

    Machesky,L. M. et al. Scar, a WASp-related protein, activates dendritic nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA 96, 3739–3744 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Rohatgi,R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    CAS  Google Scholar 

  22. 22

    Sanderson,C. M., Way,M. & Smith,G. L. Virus-induced cell motility. J. Virol. 72, 1235–1243 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Sanderson,C. M. & Smith,G. L. Vaccinia virus induces calcium-independent cell-matrix adhesion during the motile phase of infection. J. Virol. 72, 9924–9933 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Gonfloni,S. et al. The role of the linker between the SH2 domain and catalytic domain in the regulation and function of Src. EMBO J. 16, 7261–7271 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Chakrabarti,S., Sisler,J. R. & Moss,B. Compact, synthetic, vaccinia virus early/late promoter for protein expression. Biotechniques 23, 1094–1097 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Hemsley,A., Arnheim,N., Toney,M. D., Cortopassi,G. & Galas,D. J. A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Res. 17, 6545–6551 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Way,M., Pope,B. & Weeds,A. G. Evidence for functional homology in the F-actin binding domain of gelsolin and alpha-actinin: implications for the requirements of severing and capping. J. Cell Biol. 119, 835–842 (1992).

    CAS  PubMed  Google Scholar 

Download references


We are grateful to H. Miki for N-WASP cDNA and N-WASP antibody. We thank G. Smith and R. Blasco for providing recombinant vaccinia strains; J. White, C. Blaumüller, A. Desai and A. Ploubidou for reading the manuscript; T. Harder for encouraging us to try PP1; and S. Guth for the ‘round the world’ PCR method. S.G. was supported by a fellowship from the Boncompagni-Ludovisi Foundation.

Author information



Corresponding author

Correspondence to Michael Way.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frischknecht, F., Moreau, V., Röttger, S. et al. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401, 926–929 (1999).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing