Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP

Abstract

The inhibitor-of-apoptosis (IAP) family of proteins, originally identified in baculoviruses1, regulate programmed cell death in a variety of organisms2,3,4,5,6. IAPs inhibit specific enzymes (caspases) in the death cascade7,8,9,10,11 and contain one to three modules of a common 70-amino-acid motif called the BIR domain12. Here we describe the nuclear magnetic resonance structure of a region encompassing the second BIR domain (BIR2) of a human IAP family member, XIAP (also called hILP or MIHA). The structure of the BIR domain consists of a three-stranded antiparallel β-sheet and four α-helices and resembles a classical zinc finger13. Unexpectedly, conserved amino acids within the linker region between the BIR1 and BIR2 domains were found to be critical for inhibiting caspase-3. The absence or presence of these residues may explain the differences in caspase inhibition observed for different truncated and full-length IAPs10,11. Our data further indicate that these residues may bind to the active site and that the BIR domain may interact with an adjacent site on the enzyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the BIR2 domain of XIAP.
Figure 2: Surface of the BIR2 domain of XIAP.
Figure 3: Binding of (C202A/C213G)XIAP (residues 124–240) to His-tagged caspase-3 in the presence and absence of the caspase-3 inhibitor DEVD aldehyde.

Similar content being viewed by others

References

  1. Crook,N. E. Clem,R. J. & Miller,L. K. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J. Virol. 67, 2168–2174 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hay,B. A., Wassarman,D. A. & Rubin,G. M. Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83, 1253–1262 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Roy,N. et al. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80, 167–178 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Duckett,C. S. et al. A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J. 15, 2685–2694 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Uren,A. G., Pakusch,M., Hawkins,C. J., Puls,K. L. & Vaux,D. L. Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors. Proc. Natl Acad. Sci. USA 93, 4974–4978 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ambrosini,G., Adida,C. & Altieri,D. C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Med. 3, 917–921 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Hawkins,C. J., Uren,A. G., Hacker,G., Medcalf,R. L. & Vaux,D. L. Inhibition of interleukin 1β-converting enzyme-mediated apoptosis of mammalian cells by baculovirus IAP. Proc. Natl Acad. Sci. USA 93, 13786–13790 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deveraux,Q. L., Takahashi,R., Salvesen,G. S. & Reed,J. C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300–304 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Roy,N., Deveraux,Q. L., Takahashi,R., Salvesen,G. S. & Reed,J. C. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J. 16, 6914–6925 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takahashi,R. et al. A single BIR domain of XIAP sufficient for inhibiting caspases. J. Biol. Chem. 273, 7787–7790 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Tamm,I. et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas(CD95), Bax, caspases, and anti cancer drugs. Cancer Res. 58, 5315–5320 (1998).

    CAS  PubMed  Google Scholar 

  12. Uren,A. G., Coulsen,E. J. & Vaux,D. L. Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeasts. Trends Biochem. Sci. 23, 159–162 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Schwabe,J. W. R. & Klug,A. Zinc mining for protein domains. Nature Struct. Biol. 1, 345–349 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Hansen,M. R., Mueller,L. & Pardi,A. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nature Struct. Biol. 5, 1065–1074 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Clore,G. M., Starich,M. R. & Gronenborn,A. M. Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses. J. Am. Chem. Soc. 120, 10571–10572 (1998).

    Article  CAS  Google Scholar 

  16. Thornberry,N. A. et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. J. Biol. Chem. 272, 17907–17911 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Rotunda,J. et al. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nature Struct. Biol. 3, 619–625 (1996).

    Article  Google Scholar 

  18. Hinds,M. G., Norton,R. S., Vaux,D. L. & Day,C. L. Solution structure of a baculoviral inhibitor of apoptosis (IAP) repeat. Nature Struct. Biol. 6, 648–651 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Clore,G. M. & Gronenborn,A. M. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Methods Enzymol. 239, 349–363 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Neri,D., Szyperski,T., Otting,G., Senn,H. & Wüthrich,K. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28, 7510–7516 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Vuister,G. W. & Bax,A. Quantitative J correlation: A new approach for measuring homonuclear three-bond J (HNHα) coupling constants in 15N-enriched proteins. J. Am. Chem. Soc. 115, 7772–7777 (1993).

    Article  CAS  Google Scholar 

  22. Hu,J.-S., Grzesiek,S. & Bax,A. Two-dimensional NMR methods for determining χ1 angles of aromatic residues in proteins from three-bond JC′Cγ and JNCγ couplings. J. Am. Chem. Soc. 119, 1803–1804 (1997).

    Article  CAS  Google Scholar 

  23. Cornilescu,G., Delaglio,F. & Bax,A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Stein,E. G., Rice,L. M. & Brünger,A. T. Torsion angle molecular dynamics: a new efficient tool for NMR structure calculation. J. Magn. Reson. Ser. B 124, 154–164 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Nilges,M., Gronenborn,A. M., Brünger,A. T. & Clore,G. M. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints: application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Protein Eng. 2, 27–38 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Brünger,A. T. X-PLOR 3.1 Manual (Yale Univ. Press, New Haven, 1992).

    Google Scholar 

  27. Tjandra,N., Omichinski,J. G., Gronenborn,A. M., Clore,G. M. & Bax,A. Use of dipolar 1H–15N and 1H–13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nature Struct. Biol. 4, 732–738 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Rance,M., Loria,J. P. & Palmer,A. G. III Sensitivity improvement of transverse relaxation-optimized spectroscopy. J. Magn. Res. 136, 92–101 (1999).

    Article  ADS  CAS  Google Scholar 

  29. Pervushin,K., Riek,R., Wider,G. & Wüthrich,K. Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl Acad. Sci. USA 94, 12366–12371 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carson,M. J. Ribbon models of macromolecules. J. Mol. Graphics 5, 103–106 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Mendoza for technical assistance; A. Pardi for the starter cultures of Pseudomonas aeruginosa and Pf1 phage; M. Clore for a modified version of the X-PLOR program; F. Delaglio and A. Bax for the TALOS program; and J. Wu from IDUN Pharmaceuticals for the caspase-3 clone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Fesik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, C., Cai, M., Gunasekera, A. et al. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401, 818–822 (1999). https://doi.org/10.1038/44617

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/44617

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing