Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Symmetry in locomotor central pattern generators and animal gaits

Abstract

Animal locomotion is controlled, in part, by a central pattern generator (CPG), which is an intraspinal network of neurons capable of generating a rhythmic output1,2,3,4. The spatio-temporal symmetries of the quadrupedal gaits walk, trot and pace5,6,7,8 lead to plausible assumptions about the symmetries of locomotor CPGs9,10,11. These assumptions imply that the CPG of a quadruped should consist of eight nominally identical subcircuits, arranged in an essentially unique matter. Here we apply analogous arguments to myriapod CPGs. Analyses based on symmetry applied to these networks lead to testable predictions, including a distinction between primary and secondary gaits, the existence of a new primary gait called ‘jump’, and the occurrence of half-integer wave numbers in myriapod gaits. For bipeds, our analysis also predicts two gaits with the out-of-phase symmetry of the walk and two gaits with the in-phase symmetry of the hop. We present data that support each of these predictions. This work suggests that symmetry can be used to infer a plausible class of CPG network architectures from observed patterns of animal gaits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic central pattern generator (CPG) networks.
Figure 2: Half-integer wave numbers in myriapod gaits.

Similar content being viewed by others

References

  1. Delcomyn, F. Neural basis of rhythmic behavior in animals. Science 210, 492–498 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Grillner, S. Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol. Rev. 55, 247–304 (1975).

    Article  CAS  Google Scholar 

  3. Selverston, A. I. Are central pattern generators understandable? Behav. Brain Sci. 3, 535–571 (1980).

    Article  Google Scholar 

  4. Shik, M. L. & Orlovsky, G. N. Neurophysiology of locomotor automatism. Physiol. Rev. 56, 465–501 (1976).

    Article  CAS  Google Scholar 

  5. Alexander, R. McN. in Mechanics and Energetics of Animal Locomotion (eds Alexander, R. McN. & Goldspink, J. M.) 168–203 (Chapman and Hall, London, 1977).

    Google Scholar 

  6. Gambaryan, P. P. How Mammals Run: Anatomical Adaptations (Wiley, New York, 1974).

    Google Scholar 

  7. Hildebrand, M. Symmetrical gaits of horses. Science 150, 701–708 (1965).

    Article  ADS  CAS  Google Scholar 

  8. Hildebrand, M. The quadrupedal gaits of vertebrates. Bioscience 39 (11) 766–775 (1989).

    Article  Google Scholar 

  9. Collins, J. J. & Stewart, I. Coupled nonlinear oscillators and the symmetries of animal gaits. J. Nonlin. Sci. 3, 349–392 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  10. Golubitsky, M., Stewart, I., Buono, P. L. & Collins, J. J. A modular network for legged locomotion. Physica D 115, 56–72 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  11. Schöner, G., Jiang, W. Y. & Kelso, J. A. S. A synergetic theory of quadrupedal gaits and gait transitions. J. Theor. Biol. 142, 359–391 (1990).

    Article  Google Scholar 

  12. Collins, J. J. & Stewart, I. Symmetry-breaking bifurcation: a possible mechanism for 2:1 frequency-locking in animal locomotion. J. Math. Biol. 30, 827–838 (1992).

    Article  MathSciNet  CAS  Google Scholar 

  13. Collins, J. J. & Stewart, I. Hexapodal gaits and coupled nonlinear oscillator models. Biol. Cybern. 68, 287–298 (1993).

    Article  Google Scholar 

  14. Collins, J. J. & Stewart, I. A group-theoretic approach to rings of coupled biological oscillators. Biol. Cybern. 71, 95–103 (1994).

    Article  CAS  Google Scholar 

  15. Kopell, N. & Ermentrout, G. B. Symmetry and phaselocking in chains of weakly coupled oscillators. Comm. Pure Appl. Math. 39, 623–660 (1986).

    Article  MathSciNet  Google Scholar 

  16. Kopell, N. & Ermentrout, G. B. Coupled oscillators and the design of central pattern generators. Math. Biosci. 89, 14–23 (1988).

    MathSciNet  MATH  Google Scholar 

  17. Kopell, N. & Ermentrout, G. B. Phase transitions and other phenomena in chains of oscillators. SIAM J. Appl. Math. 50, 1014–1052 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  18. Buono, P.-L. & Golubitsky, M. Models of central pattern generators for quadruped locomotion: I. primary gaits. J. Math. Biol. (submitted).

  19. Golubitsky, M., Stewart, I. N. & Schaeffer, D. G. Singularities and Groups in Bifurcation Theory Vol. 2 275–282 387–399 (Springer, New York, 1988).

    Google Scholar 

  20. Buono, P.-L. A Model of Central Pattern Generators for Quadruped Locomotion. PhD Thesis, Mathematics Department, Univer. Houston (1998).

    Google Scholar 

  21. Hildebrand, M. in Neural Control of Locomotion (eds Herman, R. M., Grillner, S., Stein, P. S. G. & Stewart, D. G.) 203–236 (Plenum, New York, 1976).

    Book  Google Scholar 

  22. Alexander, R. McN. & Jayes, A. S. A dynamic similarity hypothesis for the gaits of quadrupedal mammals. J. Zool. 201, 135–152 (1983).

    Article  Google Scholar 

  23. Leach, D. H. & Sprigings, E. Gait fatigue in the racing thoroughbred. J. Equine Med. Surg. 3, 436–443 (1979).

    Google Scholar 

  24. Deuel, N. R. & Lawrence, L. M. Laterality in the gallop gait of horses. J. Biomech. 20, 645–649 (1987).

    Article  CAS  Google Scholar 

  25. Manton, S. M. The evolution of arthropodan locomotory mechanics. Part 8: Functional requirements and body design in Chilopoda. J. Linnaean Soc. (Zool.) 45, 251–484 (1965).

    Google Scholar 

  26. Full, R. J., Blickhan, R. & Ting, L. H. Leg design in hexapedal runners. J. Exp. Biol. 158, 369–390 (1991).

    CAS  PubMed  Google Scholar 

  27. Mann, R. A. in Disorders of the Foot (ed. Jahss, M. H.) 37–67 (W. B. Saunders, Philadelphia, 1982).

    Google Scholar 

  28. Mann, R. A., Moran, G. T. & Dougherty, S. E. Comparative electromyography of the lower extremity in jogging, running and sprinting. Am. J. Sports Med. 14, 501–510 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Golubitsky for help in analysing the jump gait from the rodeo video, kindly supplied by the Houston Livestock Show and Rodeo. We also thank Ray Glantz for discussions. This research was supported in part by grants from the NSF and the Texas Advanced Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Golubitsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golubitsky, M., Stewart, I., Buono, PL. et al. Symmetry in locomotor central pattern generators and animal gaits. Nature 401, 693–695 (1999). https://doi.org/10.1038/44416

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/44416

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing