Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Wave–particle duality of C60 molecules

Abstract

Quantum superposition lies at the heart of quantum mechanics and gives rise to many of its paradoxes. Superposition of de Broglie matter waves1 has been observed for massive particles such as electrons2, atoms and dimers3, small van der Waals clusters4, and neutrons5. But matter wave interferometry with larger objects has remained experimentally challenging, despite the development of powerful atom interferometric techniques for experiments in fundamental quantum mechanics, metrology and lithography6. Here we report the observation of de Broglie wave interference of C60 molecules by diffraction at a material absorption grating. This molecule is the most massive and complex object in which wave behaviour has been observed. Of particular interest is the fact that C60 is almost a classical body, because of its many excited internal degrees of freedom and their possible couplings to the environment. Such couplings are essential for the appearance of decoherence7,8, suggesting that interference experiments with large molecules should facilitate detailed studies of this process.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Diagram of the experimental set-up (not to scale).
Figure 2: Interference pattern produced by C60 molecules.

References

  1. 1

    de Broglie,L. Waves and quanta. Nature 112, 540 (1923).

    ADS  Article  Google Scholar 

  2. 2

    Davisson,C. J. & Germer,L. H. The scattering of electrons by a single crystal of nickel. Nature 119, 558–560 (1927).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Estermann,I. & Stern,O. Beugung von Molekularstrahlen. Z. Phys. 61, 95–125 (1930).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Schöllkopf,W. & Toennies,J. P. Nondestructive mass selection of small van der Waals clusters. Science 266, 1345–1348 (1994).

    ADS  Article  Google Scholar 

  5. 5

    Halban, H. v. Jr & Preiswerk,P. Preuve expérimentale de la diffraction des neutrons. C.R. Acad. Sci. 203, 73–75 (1936).

    Google Scholar 

  6. 6

    Berman,P. (ed.) Atom Interferometry (Academic, 1997).

    Google Scholar 

  7. 7

    Zurek,W. H. Decoherence and the transition from quantum to classical. Phys. Today 36–44 (October 1991).

    Article  Google Scholar 

  8. 8

    Giulini,D. et al. Decoherence and the Appearance of the Classical World in Quantum Theory (Springer, Berlin, 1996).

    Book  Google Scholar 

  9. 9

    Kroto,H. W., Heath,J. R., O'Brien,S. C., Curl,R. F. & Smalley,R. E. C60: buckminsterfullerene. Nature 318, 162–166 (1985).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Krätschmer,W., Lamb,L. D., Fostiropoulos,K. & Huffman,D. R. A new form of carbon. Nature 347, 354–358 (1990).

    ADS  Article  Google Scholar 

  11. 11

    Savas,T. A., Shah,S. N., Schattenburg,M. L., Carter,J. M. & Smith,H. I. Achromatic interferometric lithography for 100-nm-period gratings and grids. J. Vac. Sci. Technol. B 13, 2732–2735 (1995).

    CAS  Article  Google Scholar 

  12. 12

    Ding,D., Huang,J., Compton,R. N., Klots,C. E. & Haufler,R. E. cw laser ionization of C60 and C70. Phys. Rev. Lett. 73, 1084–1087 (1994).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Scoles,G. (ed.) Atomic and Molecular Beam Methods Vol. 1 (Oxford Univ. Press, 1988).

    Google Scholar 

  14. 14

    Born,M. & Wolf,E. Principles of Optics (Pergamon, Oxford, 1984).

    Google Scholar 

  15. 15

    Grisenti,R. E., Schölkopf,W., Toennies,J. P., Hegerfeldt,G. C. & Köhler,T. Determination of atom-surface van der Waals potentials from transmission-grating diffraction intensities. Phys. Rev. Lett. 83, 1755–1758 (1999).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Grisenti,R. E. et al. He atom diffraction from nanostructure transmission gratings: the role of imperfections. Phys. Rev. A (submitted).

  17. 17

    Joos,E. & Zeh,H. D. The emergence of classical properties through interaction with the environment. Z. Phys. B. 59, 223–243 (1985).

    ADS  Article  Google Scholar 

  18. 18

    Kolodney,E., Budrevich,A. & Tsipinyuk,B. Unimolecular rate constants and cooling mechanisms of superhot C60 molecules. Phys. Rev. Lett. 74, 510–513 (1995).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Mitzner,R. & Campbell,E. E. B. Optical emission studies of laser desorbed C60. J. Chem. Phys. 103, 2445–2453 (1995).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Pfau,T., Spälter,S., Kurtsiefer, Ch., Ekstrom,C. R. & Mlynek,J. Loss of spatial coherence by a single spontaneous emission. Phys. Rev. Lett. 73, 1223–1226 (1994).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Clauser,J. F. & Li,S. “Heisenberg microscope” decoherence atom interferometry. Phys. Rev. A 50, 2430–2433 (1994).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Chapman,M. S. et al. Photon scattering from atoms in an atom interferometer: Coherence lost and regained. Phys. Rev. Lett. 75, 3783–3787 (1995).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Werner,S. A., Colella,R., Overhauser,A. W. & Eagen,C. F. Observation of the phase shift of a neutron due to precession in a magnetic field. Phys. Rev. Lett. 35, 1053–1055 (1975).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Rauch,H. et al. Verification of coherent spinor rotation of fermions. Phys. Lett. A 54, 425–427 (1975).

    ADS  Article  Google Scholar 

  25. 25

    Clauser,J. F. in Experimental Metaphysics (eds Cohen, R. S., Home, M. & Stachel, J.) 1–11 (Kluwer Academic, Dordrecht, 1997).

    Google Scholar 

  26. 26

    Arndt,M., Nairz,O., van der Zouw,G. & Zeilinger,A. in Epistemological and Experimental Perspectives on Quantum, Physics (eds Greenberger, D., Reiter, W. L. & Zeilinger, A.) 221–224 (IVC Yearbook, Kluwer Academic, Dordrecht, 1999).

    Book  Google Scholar 

Download references

Acknowledgements

We thank M. Haluška, H. Kuzmany, R. Penrose, P. Scheier, J. Schmiedmayer and G. Senn for discussions. This work was supported by the Austrian Science Foundation FWF, the Austrian Academy of Sciences, the TMR programme of the European Union, and the US NSF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anton Zeilinger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arndt, M., Nairz, O., Vos-Andreae, J. et al. Wave–particle duality of C60 molecules. Nature 401, 680–682 (1999). https://doi.org/10.1038/44348

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing