Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

That's no laser, it's a particle accelerator

A Correction to this article was published on 27 September 2006

This article has been updated

Device mimics light source to speed up electrons.

Israeli physicists have turned a laser into a particle accelerator. Dubbed a paser — for particle acceleration by stimulated emission of radiation — the device accelerates bundles of electrons using the same principle as a laser.

At present it can only accelerate electrons by about 0.15% of their initial speed, but it could lead to compact particle accelerators and tabletop X-ray devices, according to Samer Banna of the Israel Institute of Technology in Haifa. He and his colleagues will publish their work in Physical Review Letters.

Conventional lasers exploit the quantum properties of atoms. An energy source is used to boost the electrons in a group of atoms into an elevated energy state. Passing light in the form of photons stimulates the atoms and causes the electrons to fall back to the lower energy level, emitting more photons in the process. These in turn stimulate more atoms and so on, so that a large number of photons are emitted. The photons are all identical, which makes the beam of light uniform.

Pasers work on a similar principle, but the output is accelerated electrons. Packets of electrons are fired into a cloud of excited carbon dioxide gas. As in a laser, the gas releases a large number of identical photons. But those photons are instantly absorbed by the passing electrons, which get an energetic kick, and leave the device moving more quickly than when they came in.

The fact that the paser uses atoms to speed up electrons sets it apart from other particle accelerators. “This is unlike anything that's come before,” says Eric Colby of the Stanford Linear Accelerator Center in California. The unique mode of action makes the paser far more efficient than current machines, which achieve acceleration by generating enormous electric fields inside huge cavities. Colby is optimistic about the paser's potential. “It's a pretty small effect now,” he says, “but there are strong technical reasons to believe that a very significant gain in acceleration is possible.”

If you can store energy in a material, a great many things can be done.

Levi Schächter, of the Israel Institute of Technology, believes that the paser could also make its mark as a source of X-rays. If the high-speed electrons have their paths bent after they leave the device, they will release a laser-like beam of X-rays that could be used for medical or nanotechnology applications. But Schächter is reluctant to guess exactly what may come of the technology. “In Hebrew we say, 'It's difficult to make predictions, particularly regarding the future'.”

It wouldn't be possible to produce the exact equivalent of a laser beam with electrons — the Pauli exclusion principle states that electrons cannot exist in the same energy state at the same time. But laser equivalents can in theory be created for other types of particle, such as gravitons (which carry the gravitational force), phonons (packets of vibration) or some nuclei — if a system can be found that emits them. In June, for example, a group of researchers reported building a sound laser, or saser, that uses semiconductor technology to create a uniform beam of phonons (A. J. Kent et al. Phys. Rev. Lett. 96, 215504; 2006).

Colby says that these new systems show that it is easier than one might think to generate laser-like behaviour. “If you can store energy in a material,” he says, “a great many things can be done.”

Change history

  • 21 September 2006

    In the original version of this story, we incorrectly stated that the device described could accelerate electrons to 0.15% of their initial speed. That number actually refers to the change in kinetic energy of the electron bunches.


Related links

Related links

Related links in Nature Research

Get laser-like beams from salt

Lasers trigger cleaner fusion

Silicon laser runs non-stop

Physical sciences news channel

2005: Year of physics

Future computing in focus

Related external links

Levi Schächter on pasers

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brumfiel, G. That's no laser, it's a particle accelerator. Nature 443, 256 (2006).

Download citation

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing