Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube


Conventional electronic devices generally utilize only the charge of conduction electrons; however, interest is growing in ‘spin-electronic’ devices1, whose operation depends additionally on the electronic spin. Spin-polarized electrons (which occur naturally in ferromagnetic materials) can be injected from a ferromagnet into non-ferromagnetic materials2,3,4, or through oxide tunnel barriers3,5,6,7,8,9,10. The electron-scattering rate at any subsequent ferromagnetic/non-ferromagnetic interface depends on the spin polarity, a property that is exploited in spin-electronic devices. The unusual conducting properties11,12,13,14,15,16,17,18 of carbon nanotubes offer intriguing possibilities for such devices; their elastic- and phase-scattering lengths are extremely long16,17, and carbon nanotubes can behave as one-dimensional conductors18. Here we report the injection of spin-polarized electrons from ferromagnetic contacts into multi-walled carbon nanotubes, finding direct evidence for coherent transport of electron spins. We observe a hysteretic magnetoresistance in several nanotubes with a maximum resistance change of 9%, from which we estimate the spin-flip scattering length to be at least 130 nm—an encouraging result for the development of practical nanotube spin-electronic devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structure of our devices, consisting of a single multi-walled carbon nanotube (MWNT) electrically contacted by ferromagnetic Co.
Figure 2: Two-terminal differential resistance as a function of magnetic field for three different MWNT devices.
Figure 3: Detailed characterization of a single nanotube device.


  1. Prinz,G. A. Magnetoelectronics. Science 282, 1660–1663 (1998).

    Article  CAS  Google Scholar 

  2. Tedrow,P. M. & Meservey,R. Spin-dependent tunnelling into ferromagnetic nickel. Phys. Rev. Lett. 26, 192–195 (1971).

    Article  CAS  ADS  Google Scholar 

  3. Aronov,A. G. Spin injection in metals and polarisation of nuclei. Pis'ma Zh. Eksp. Teor. Fiz. 24, 37–39 (1976); JETP Lett. 24, 32–34 (1976).

    CAS  Google Scholar 

  4. Johnson,M. & Silsbee,R. H. Interfacial charge-spin coupling–injection and detection of spin. Phys. Rev. Lett. 55, 1790–1793 (1985).

    Article  CAS  ADS  Google Scholar 

  5. Julliere,M. Tunnelling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    Article  ADS  Google Scholar 

  6. Moodera,J. S. et al. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article  CAS  ADS  Google Scholar 

  7. Miyazaki,T. & Tezuka,N. Giant magnetic tunnelling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995).

    Article  CAS  ADS  Google Scholar 

  8. Meservey,R. & Tedrow,P. M. Spin-polarised electron tunnelling. Phys. Rep. 238, 173–243 (1994).

    Article  ADS  Google Scholar 

  9. Moodera,J. S., Nowak,J. & van de Veerdonk,R. J. M. Interface magnetism and spin wave scattering in ferromagnet-insulator-ferromagnet tunnel junctions. Phys. Rev. Lett. 80, 2941–2944 (1998).

    Article  CAS  ADS  Google Scholar 

  10. Shang,C. H., Nowak,J., Jansen,R. & Moodera,J. S. Temperature dependence of magnetoresistance and surface magnetization in ferromagnetic tunnel junctions. Phys. Rev. B 58, R2917–R2920 (1998).

    Article  CAS  ADS  Google Scholar 

  11. Ebbesen,T. W. & Ajayan,P. M. Large-scale synthesis of carbon nanotubes. Nature 358, 220–222 (1992).

    Article  CAS  ADS  Google Scholar 

  12. Langer,L. et al. Quantum transport in multiwalled carbon nanotubes. Phys. Rev. Lett. 76, 479–482 (1996).

    Article  CAS  ADS  Google Scholar 

  13. Dai,H., Wong,E. W. & Lieber,C. M. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272, 523–526 (1996).

    Article  CAS  ADS  Google Scholar 

  14. Ebbesen,T. W. et al. Electrical conductivity of individual carbon nanotubes. Nature 382, 54–56 (1996).

    Article  CAS  ADS  Google Scholar 

  15. Saito,R., Dresselhaus,G. & Dresselhaus,M. S. Physical Properties of Carbon Nanotubes (Imperial College Press, Singapore, 1998).

    Book  Google Scholar 

  16. Bachtold,A. et al. in Proc. 12th Int. Winter School on Electronic Properties of Novel Materials (eds Kuzmany, H., Fink, J., Mehring, M. & Roth, S.) 65–68 (Am. Inst. Phys., New York, 1998).

    Google Scholar 

  17. Bachtold,A. et al. Aharonov-Bohm oscillations in carbon nanotubes. Nature 397, 673–675 (1999).

    Article  CAS  ADS  Google Scholar 

  18. Frank,S. et al. Carbon nanotube quantum resistors. Science 280, 1744–1746 (1998).

    Article  CAS  ADS  Google Scholar 

  19. Rüdiger,U. et al. Magnetoresistance, micromagnetism, and domain-wall scattering in epitaxial hcp Co films. Phys. Rev. B 59, 11914–11918 (1999).

    Article  ADS  Google Scholar 

  20. Chien,C. L. Magnetism and giant magneto-transport properties in granular solids. Annu. Rev. Mater. Sci. 25, 129–160 (1995).

    Article  CAS  ADS  Google Scholar 

  21. Kikkawa,J. M. & Awschalom,D. D. Resonant spin amplification in n-type GaAs. Phys. Rev. Lett. 80, 4313–4316 (1998).

    Article  CAS  ADS  Google Scholar 

  22. Cobden,D. H. et al. Spin splitting and even-odd effects in carbon nanotubes. Phys. Rev. Lett. 81, 681–684 (1998).

    Article  CAS  ADS  Google Scholar 

  23. Tans,S. J. et al. Electron-electron correlations in carbon nanotubes. Nature 394, 761–764 (1998).

    Article  CAS  ADS  Google Scholar 

Download references


We thank H. Mizuta, T. Nakanishi, M. D. R. Thomas, D. G. Hasko and H. O. Müller for discussions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Bruce W. Alphenaar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tsukagoshi, K., Alphenaar, B. & Ago, H. Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature 401, 572–574 (1999).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing