Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Discovery of a moon orbiting the asteroid 45 Eugenia

Abstract

Evidence for asteroidal satellites (moons) has been sought for decades, because the relative frequency of such satellites will bear on the collisional history of the asteroid belt and the Solar System, yet only one has been detected unambiguously1,2,3. Here we report the discovery of a satellite of the asteroid 45 Eugenia, using an adaptive optics system on a ground-based telescope. The satellite has a diameter of about 13 km, and an orbital period of about 4.7 days with a separation of 1,190 km from Eugenia. Using a previously determined4 diameter for Eugenia, we estimate that its bulk density is about 1.2 g cm-3, which is similar to that of the C-type asteroid Mathilde5,6. This implies that Eugenia, also a low-albedo C-type asteroid, may be a rubble pile, or composed of primitive, icy materials of low bulk density.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discovery image, showing the asteroid 45 Eugenia and its satellite S/1998(45)1.
Figure 2: How the orbit of the satellite around 45 Eugenia would appear if it were observed face-on.
Figure 3: Orbit of the satellite around 45 Eugenia as observed.

Similar content being viewed by others

References

  1. Belton,M. J. S. et al. Bulk density of asteroid 243 Ida from the orbit of its satellite Dactyl. Nature 374, 785–788 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Belton,M. J. S. et al. The discovery and orbit of 1993(243)1 Dactyl. Icarus 120, 185–199 (1996).

    Article  ADS  Google Scholar 

  3. Chapman,C. R. et al. Discovery and physical properties of Dactyl, a satellite of asteroid 243 Ida. Nature 374, 783–785 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Tedesco,E. F., Veeder,G. J., Fowler,J. W. & Chillemi,J. R. The IRAS Minor Planet Survey—Final Report (PL-TR-92-2049, Phillips Laboratory, Hanscom Air Force Base, MA, 1992).

    Google Scholar 

  5. Veverka,J. et al. NEAR's flyby of 253 Mathilde: images of a C-asteroid. Science 278, 2109–2114 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Yeomans,D. K. et al. Estimating the mass of asteroid 253 Mathilde from tracking data during the NEAR flyby. Science 278, 2106–2109 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Weidenschilling,S. J., Paolicchi,P. & Zappalà,V. in Asteroids II (eds Binzel, R., Gehrels, T. & Matthews, M.) 643–658 (Univ. Arizona Press, Tucson, 1989).

    Google Scholar 

  8. Van Flandern,T. C., Tedesco,E. F. & Binzel,R. P. in Asteroids (ed. Gehrels, T.) 443–465 (Univ. Arizona Press, Tucson, 1979).

    Google Scholar 

  9. Gehrels,T., Drummond,J. D. & Levenson,N. A. The absence of satellites of asteroids. Icarus 70, 257–263 (1990).

    Article  ADS  Google Scholar 

  10. Chauvineau,B. & Mignard,F. Dynamics binary asteroids II. Jovian perturbations. Icarus 87, 377–390 (1990).

    Article  ADS  Google Scholar 

  11. Bottke, W. F. Jr & Melosh,H. J. Formation of asteroidal satellites and doublet craters by planetary tidal forces. Nature 381, 51–53 (1996).

    Article  ADS  Google Scholar 

  12. Durda,D. D. The formation of asteroidal satellites in catastrophic collisions. Icarus 120, 212–219 (1996).

    Article  ADS  Google Scholar 

  13. Merline,W. J. et al. NEAR's encounter with 253 Mathilde: Search for satellites. Proc. Lunar Planet. Sci. Conf. XXIX, abstract no. 1954 (1998).

  14. Merline,W. J. et al. Search for satellites around asteroid 433 Eros from NEAR flyby imaging. Proc. Lunar Planet. Sci. Conf. XXX, abstract no. 2055 (1999).

  15. Merline,W. J. et al. in S/1998(45)1. IAU Circ. No. 7129, (1999).

  16. Drummond,J. D., Weidenschilling,S. J., Chapman,C. R. & Davis,D. R. Photometric geodesy of main-belt asteroids. II. Analysis of lightcurves for poles and shapes. Icarus 73, 314–323 (1988).

    Article  Google Scholar 

  17. Taylor,R. C., Birch,P. V., Pospieszalska-Surdej,A. & Surdej,J. Asteroid 45 Eugenia: lightcurves and pole orientation. Icarus 73, 314–323 (1988).

    Article  ADS  Google Scholar 

  18. Durda,D. D. & Geissler,P. E. The formation of asteroidal satellites in large cratering collisions. Bull. Am. Astron. Soc. 28, 1101 (1996).

    Google Scholar 

  19. Chauvineau,B., Farinella,P. & Mignard,F. Planar orbits about a triaxial body: Applications to asteroidal satellites. Icarus 105, 370–384 (1993).

    Article  ADS  Google Scholar 

  20. Sheeres,D. J. Dynamics about uniformly rotating tri-axial ellipsoids. Icarus 110, 225–238 (1994).

    Article  ADS  Google Scholar 

  21. Hamilton,D. P. & Burns,J. A. Orbital stability zones about asteroids. Icarus 92, 118–131 (1991).

    Article  ADS  Google Scholar 

  22. Harris,A. W., Young,J. W., Bowell,E. & Tholen,D. J. Asteroid lightcurve observations from 1981–1983. Icarus (in the press).

  23. Gradie,J. & Flynn,L. A search for satellites and dust belts around asteroids: negative results. Proc. Lunar Planet. Sci. Conf. XIX, 405–406 (1988).

    ADS  Google Scholar 

  24. Storrs,A. et al. Imaging observations of asteroids with Hubble Space Telescope. Icarus 137, 260–268 (1999).

    Article  ADS  Google Scholar 

  25. Belton,M. J. S. et al. Galileo encounter with 951 Gaspra: First pictures of an asteroid. Science 257, 1647–1652 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Veverka,J. et al. Imaging of asteroid 433 Eros during NEAR's flyby reconnaissance. Science 285, 562–564 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Mottola,S. & Lahulla,F. Mutual eclipse events in binary asteroid system 1996 FG3: observations and a numerical model. Asteroids, Comets, Meteors '99, paper 24.03 (1999): 〈http://scorpio.tn.cornell.edu/ACM/web_abs.html〉.

    Google Scholar 

  28. Pravec,P., Wolf,M., Sarounova,L. Occultation/eclipse events in binary asteroid 1991 VH. Icarus 133, 79–88 (1998).

    Article  ADS  Google Scholar 

  29. Davis,D. R., Chapman,C. R., Durda,D. D., Farinella,P. & Marzari,F. The formation and collisional/dynamical evolution of the Ida/Dactyl system as part of the Koronis family. Icarus 120, 220–230 (1996).

    Article  ADS  Google Scholar 

  30. Chapman,C. R., Paolicchi,P., Zappalà,V., Binzel,R. P. & Bell,J. F. in Asteroids II (eds Binzel, R., Gehrels, T. & Matthews, M.) 386–415 (Univ. Arizona Press, Tucson, 1989).

    Google Scholar 

  31. Bus,S. J. Compositional Structure in the Asteroid Belt: Results of a Spectroscopic Survey. Thesis, Massachusetts Inst. Technol. (1999).

    Google Scholar 

  32. Zappalà,V., Bendjoya, Ph., Cellino,A., Farinella,P. & Froeschle,C. Asteroid families: Search of a 12,487-asteroid sample using two different clustering techniques. Icarus 116, 291–314 (1995).

    Article  ADS  Google Scholar 

  33. Roddier,F. Curvature sensing and compensation: a new concept in adaptive optics. Appl. Opt. 27, 1223–1225 (1988).

    Article  ADS  CAS  Google Scholar 

  34. Roddier,F., Northcott,M. & Graves,J. E. A simple low-order adaptive optics system for near infrared applications. Publ. Astron. Soc. Pacif. 103, 131–149 (1991).

    Article  ADS  Google Scholar 

  35. Rigaut,F. et al. Performance of the Canada-France-Hawaii Telescope adaptive optics bonette. Publ. Astron. Soc. Pacif. 110, 152–164 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

W.J.M., L.M.C., C.D., F.R., F.M. and G.D. are visiting astronomers at the Canada-France-Hawaii Telescope (CFHT), operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique of France and the University of Hawaii. This work was done using observing time allocated through the University of Hawaii and granted by the CFHT Corporation, and was supported by funding from NASA and the NSF. We thank the staff of CFHT, particularly J.-L. Beuzit, for their logistical support; M. Northcott and J. E. Graves for development of a prototype instrument; and W. Colwell for assistance with data analysis tools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Merline.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merline, W., Close, L., Dumas, C. et al. Discovery of a moon orbiting the asteroid 45 Eugenia. Nature 401, 565–568 (1999). https://doi.org/10.1038/44089

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/44089

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing