Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multi-gas assessment of the Kyoto Protocol

Abstract

The Kyoto Protocol allows reductions in emissions of several ‘greenhouse’ gases to be credited against a CO2-equivalent emissions limit, calculated using ‘global warming potential’ indices for each gas. Using an integrated global-systems model, it is shown that a multi-gas control strategy could greatly reduce the costs of fulfilling the Kyoto Protocol compared with a CO2-only strategy. Extending the Kyoto Protocol to 2100 without more severe emissions reductions shows little difference between the two strategies in climate and ecosystem effects. Under a more stringent emissions policy, the use of global warming potentials as applied in the Kyoto Protocol leads to considerably more mitigation of climate change for multi-gas strategies than for the—supposedly equivalent—CO2-only control, thus emphasizing the limits of global warming potentials as a tool for political decisions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Future greenhouse gases emissions.
Figure 2: Marginal abatement curves (MACs).
Figure 3: Climate and ecosystem effects.

References

  1. 1

    Adams,R. M., Chang,C., McCarl,B. & Callaway,J. in Global Change: Economic Issues in Agriculture, Forestry, and Natural Resources (eds Reilly, J. & Anderson, M.) 273–287 (Westview, Boulder, CO, 1992).

    Google Scholar 

  2. 2

    Richards,K. R. in Global Change: Economic Issues in Agriculture, Forestry, and Natural Resources (eds Reilly, J. & Anderson, M.) 288–310 (Westview, Boulder, CO, 1992).

    Google Scholar 

  3. 3

    Cook,E. Lifetime Commitments: Why Policy-makers Can't Afford to Overlook Fully Fluorinated Compounds (World Resources Institute, Washington DC, 1995).

    Google Scholar 

  4. 4

    Harnisch,J. & Prinn,R. G. Sulfur hexafluoride emissions. Environ. Sci. Technol. 4, 56a (1999).

    ADS  Article  Google Scholar 

  5. 5

    Harnisch,J., Sue Wing,I., Jacoby,H. D. & Prinn,R. G. in Extraction and Processing Division Congr. 1999 (ed. Mishra, B.) 797–815 (The Minerals, Metals and Materials Soc., Warrendale, PA, 1999).

    Google Scholar 

  6. 6

    Victor,D. G. & MacDonald,G. J. Future Emissions of Sulfur Hexafluoride and Perfluorocarbons: Implications for Global Policy and Verifying Compliance with the Kyoto Protocol (International Institute for Applied Systems Analysis, Laxenburg, 1998).

    Google Scholar 

  7. 7

    Victor,D. G. & MacDonald,G. J. A model for estimating future emissions of sulfur hexafluoride and perfluorocarbons. Clim. Change (in the press).

  8. 8

    Hoffert,M. I. et al. Energy implications of future stabilization of atmospheric CO2 content. Nature 395, 881–884 (1998).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Wigley,T. M., Richels,R. & Edmonds,J. A. Economic and environmental choices in the stabilization of climate. Nature 379, 240–243 (1996).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Nordhaus,W. D. Managing the Global Commons 49–74 (MIT Press, Cambridge, MA, 1994).

    Google Scholar 

  11. 11

    Hourcade,J. C. et al. in Climate Change 1995: Economic and Social Dimensions of Climate Change (eds Bruce, J. P. et al.) 297–366 (Cambridge Univ. Press, 1996).

    Google Scholar 

  12. 12

    Prinn,R. et al. Integrated global system model for climate policy assessment: feedbacks and sensitivity studies. Clim. Change 41, 469–546 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Reilly,J. et al. Multi-Gas Assessment of the Kyoto Protocol (MIT Joint Program on the Science and Policy of Global Change, Report No. 45, MIT, Cambridge, MA, 1999).

    Book  Google Scholar 

  14. 14

    Yang,Z. et al. The MIT Emissions Prediction and Policy Analysis (EPPA) Model (MIT Joint Program on the Science and Policy of Global Change, Report No. 6, MIT, Cambridge, MA, 1996).

  15. 15

    Wang,C., Prinn,R. G. & Sokolov,A. A global interactive chemistry climate model: formulation and testing. J. Geophys. Res. 103, 3399–3417 (1998).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Sokolov,A. P. & Stone,P. H. A flexible climate model for use in integrated assessment. Clim. Dyn. 14, 291–303 (1998).

    Article  Google Scholar 

  17. 17

    Xiao,X. et al. Transient climate change and net ecosystem production of the terrestrial biosphere. Glob. Biogeochem. Cycles 12, 345–360 (1998).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Schimel,D. et al. in Climate Change 1995: the Science of Climate Change (eds Houghton, J. T. et al.) 65–131 (Cambridge Univ. Press, 1996).

    Google Scholar 

  19. 19

    Fan,S. et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282, 442–446 (1998).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Schneider,S. H. Detecting climatic change signals: are there any fingerprints? Science 263, 341–347 (1994).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Eckaus,R. Comparing the effects of greenhouse gas emissions on global warming. Energy J. 13, 25–34 (1992).

    Article  Google Scholar 

  22. 22

    Reilly,J. & Richards,K. Climate change damage and the trace gas index issue. Environ. Resour. Econ. 3, 41–61 (1993).

    Article  Google Scholar 

  23. 23

    Schmalensee,R. Comparing greenhouse gases for policy purposes. Energy J. 14, 245–255 (1993).

    Article  Google Scholar 

  24. 24

    Reilly,J. in Economics and Policy Issues in Climate Change (ed. Nordhaus, W. D.) 243–256 (Resources for the Future, Washington DC, 1998).

    Google Scholar 

  25. 25

    Lind,R. & Schuler,R. in Economics and Policy Issues in Climate Change (ed. Nordhaus, W. D.) 59–96 (Resources for the Future, Washington DC, 1998).

    Google Scholar 

  26. 26

    Energy Information Administration (EIA) International Energy Outlook (Rep. No. DOE/EIA-0484(99)); 〈http://www.eia.doe.gov/oiaf/ieo99〉.

  27. 27

    Nilsson,S. & Schopfhauser,W. The carbon-sequestration potential of a global afforestation program. Clim. Change 30, 267–293 (1994).

    ADS  Article  Google Scholar 

  28. 28

    Kruger,D. Integrated Assessment of Global Climate Change: Modeling of Non-CO2 Gases 1–17 (Methane and Utilities Branch, US Environmental Protection Agency, Washington DC, 1999).

    Google Scholar 

  29. 29

    US Environmental Protection Agency, Methane Branch. Costs of Reducing Methane Emissions in the United States 1–92 (1999); http://www.epa.gov/ghginfo

    Google Scholar 

  30. 30

    Cole,V. et al. in Climate Change 1995: Impacts, Adaptations, and Mitigation of Climate Change (eds Watson, R. et al.) 726–771 (Cambridge Univ. Press, 1996).

    Google Scholar 

  31. 31

    Denbaly,M. & Vroomen,H. Dynamic fertilizer nutrient demands for corn: a cointegrated and error-correction system. Am. J. Agric. Econ. 75 (1) (1993).

  32. 32

    Fernandez-Cornejo,J. Demand and Substitution of Agricultural Inputs in the Central Cornbelt States (Rep. TB-1816, US Dept of Agriculture, Economic Research Service, Washington, 1993).

    Google Scholar 

  33. 33

    Oram,D. E., Sturges,W. T., Penkett,S. A., McCulloch,A. & Fraser,P. J. Growth of fluoroform (CHF3, HFC-23) in the background atmosphere. Geophys. Res. Lett. 25, 35–38 (1998).

    ADS  CAS  Article  Google Scholar 

  34. 34

    McCulloch,A. Future consumption and emissions of hydrofluorocarbon (HFC) alternatives to CFCs: comparison of estimates using top-down and bottom-up approaches. Environ. Int. 21, 353–362 (1995).

    CAS  Article  Google Scholar 

  35. 35

    Maiss,M. & Brenninkmeijer,C. A. M. Atmospheric SF6, trends, sources and prospects. Environ. Sci. Technol. 32, 3077–3086 (1998).

    ADS  CAS  Article  Google Scholar 

  36. 36

    de Jager,D., Hendriks,C. A., Heijnes,H. A. M. & Blok,K. in Greenhouse Gas Control Technologies (eds Eliasson, B., Riemer, P. W. F. & Wokaun, A.) 503–508 (Pergamon, New York, 1999).

    Google Scholar 

  37. 37

    Jacoby,H. et al. CO2 limits: economic adjustments and the distribution of burdens. Energy J. 18 (3), 31–58 (1997).

    Google Scholar 

  38. 38

    US DOE Interlaboratory Working Group. Scenarios of US Carbon Reductions (Office of Efficiency and Renewable Energy, US Dept of Energy, Washington DC, 1997).

    Google Scholar 

  39. 39

    Jacoby,H. The uses and misuses of technology development as a component of climate policy 1–16 (MIT Joint Program on the Science and Policy of Global Change, Report No. 43, MIT, Cambridge, MA, 1998).

  40. 40

    Goulder,L. & Schneider,S. Induced technical change and the attractiveness of CO2 abatement policies. Resour. Energy Econ. 21, 211–253 (1999).

    Article  Google Scholar 

  41. 41

    Wang,C. & Prinn,R. G. Impact of emissions, chemistry, and climate on atmospheric carbon monoxide: 100-year predictions from a global chemistry-climate model. Chemosphere (in the press); (also as the MIT Joint Program on the Science and Policy of Global Change Report No. 35, MIT, Cambridge, MA, 1998).

    Google Scholar 

  42. 42

    Daily,G. C. (ed.) Daily Services: Societal Dependence on Natural Ecosystems (Island Press, Washington DC, 1997).

    Google Scholar 

  43. 43

    Melillo,J. M. Warm, warm on the range. Science 283, 183–184 (1999).

    CAS  Article  Google Scholar 

  44. 44

    Cao,M. & Woodward,F. I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393, 249–252 (1998).

    ADS  CAS  Article  Google Scholar 

  45. 45

    Smith,T. M. & Shugart,H. H. The transient response of terrestrial carbon storage to a perturbed climate. Nature 361, 523–526 (1993).

    ADS  Article  Google Scholar 

  46. 46

    Woodwell,G. M. et al. in Biotic Feedbacks in the Global Climatic System (eds Woodwell, G. M. & Mackenzie, F. T.) 393–411 (Oxford Univ. Press, NY, 1995).

    Google Scholar 

  47. 47

    Foley,J. A. et al. Feedbacks between climate and boreal forests during the mid-Holocene. Nature 371, 52–54 (1994).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the industrial and government sponsors of the Joint Program on the Science and Policy of Global Change at MIT, and thank V. Webb for his research assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Reilly.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reilly, J., Prinn, R., Harnisch, J. et al. Multi-gas assessment of the Kyoto Protocol. Nature 401, 549–555 (1999). https://doi.org/10.1038/44069

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing