News & Views | Published:

Mathematical physics

Going to ground

Nature volume 440, pages 433434 (23 March 2006) | Download Citation

Subjects

How can one find the minimum total energy of an infinite number of particles? A proof showing that, for certain interactions, periodic ‘ground states’ exist provides a new perspective on this, one of the oldest questions in physics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Phys. Rev. Lett. 95, 265501 (2005).

  2. 2.

    , , & Phys. Rev. Lett. (in the press); preprint available at (2006).

  3. 3.

    , & J. Phys. (Paris) 50, 3191 (1989).

  4. 4.

    , , & Phys. Rev. Lett. 85, 2522–2525 (2000).

  5. 5.

    J. Chem. Phys. 65, 3968–3974 (1976).

  6. 6.

    Phys. Rev. B 20, 299–302 (1979).

  7. 7.

    , , , & Phys. Rev. Lett. 96, 045701 (2006).

  8. 8.

    & Solid State Physics (Holt Saunders, Philadelphia, 1976).

  9. 9.

    Principles of the Theory of Solids (Cambridge Univ. Press, 1972).

  10. 10.

    From Hamiltonians to Phase Diagrams (Springer, Berlin, 1987).

  11. 11.

    & Phys. Rev. Lett. 41, 702–705 (1978).

Download references

Author information

Affiliations

  1. Christos N. Likos is at the Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraβe 1, D-40225 Düsseldorf, Germany. likos@thphy.uni-duesseldorf.de

    • Christos N. Likos

Authors

  1. Search for Christos N. Likos in:

About this article

Publication history

Published

DOI

https://doi.org/10.1038/440433a

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing