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Carrot and stick: HIF-a engages c-Myc in hypoxic
adaptation

LE Huang*,1,2

The past decade of research on hypoxic responses has provided a considerable understanding of how cells respond to hypoxic
stress at the molecular level, thanks to the identification and molecular cloning of the hypoxia-inducible transcription factor,
HIF-1a. Numerous target genes have since been identified to account for various aspects of the hypoxic response, including
angiogenesis and glycolysis. Yet, fundamental questions remain regarding the mechanisms by which hypoxia controls cell
proliferation, genetic instability, mitochondrial biogenesis, and oxidative respiration in cancer cells. Although the proto-
oncoprotein c-Myc appears to be the diametrical opposite of HIF-1a in most of these processes, recent studies indicate that
c-Myc is an integral part of the HIF-a–c-Myc molecular pathway in the hypoxic response. It has been shown that HIF-a engages
with Myc by various mechanisms to achieve oxygen homeostasis for cell survival. This article focuses on the intricate roles of c-
Myc in the hypoxic response, discusses various mechanisms controlling c-Myc activity by HIF-a for the regulation of hypoxia-
responsive genes, and emphasizing the outcome of gene expression apparently dependent upon hypoxic conditions, cellular
context, and gene promoter.
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Solid tumors tend to develop hypoxia (oxygen deprivation),
which arises out of the rapid cell proliferation that outstrips the
supply of oxygen from the blood vessels. Consequently,
tumor hypoxia activates hypoxia-inducible factor (HIF)-1a and
HIF-2a,1,2 two of the well-characterized hypoxia-inducible
transcription factors critical for tumor angiogenesis, glyco-
lysis, and metastasis.3–5 Under physiological conditions,
hypoxia activates the ubiquitous HIF-1a, whereas HIF-2a
expression is more tissue specific. Yet in human cancers of
diverse origins, both HIF-1a and HIF-2a, referred to collec-
tively hereinafter as HIF-a, are frequently overexpressed and
activated.

Hypoxia-inducible factor-a is the regulatory subunit of the
HIF heterodimeric complex paired with the aryl hydrocarbon
receptor nuclear translocator (ARNT, also known as HIF-1b).6

They belong to the Per-ARNT-Sim (PAS) superfamily7 of
transcription factors containing basic helix–loop–helix domains
(Figure 1a). Whereas PAS domains confer target gene
specificity through protein–protein interactions,8 the oxygen-
dependent degradation domain, unique to HIF-a, mediates
oxygen-dependent proteolysis.9 As such, despite constitutive
transcription and translation of the HIF1A and EPAS1 genes
(encoding HIF-1a and HIF-2a, respectively), HIF-a protein
levels remain low in oxygenated conditions because of
proteolysis via the ubiquitin–proteasome pathway.9–12 HIF-a

degradation requires the pVHL-containing E3 ubiquitin
ligase,13–15 which recognizes two hydroxylated proline resi-
dues of HIF-a (P402 and P564 in HIF-1a; Figure 1a).16–18 HIF-
a is hydroxylated by three prolyl hydroxylases, EglN1, EglN2,
and EglN3 (better known as PHD2, PHD1, and PHD3,
respectively), which sense oxygen tension and transduce
oxygen signals through hydroxylation.19–21 Interestingly, HIF-
1a is also subjected to asparaginyl hydroxylation at N803
(Figure 1a), which is located in the C-terminal transactivation
domain that recruits the transcription co-activator p300/
CBP.22 Thus, the asparaginyl hydroxylation hinders p300/
CBP binding, thereby inhibiting HIF-a transactivation.23–25 By
contrast, hypoxia inhibits hydroxylation by limiting oxygen
availability, resulting in HIF-a stabilization, which triggers
the HIF-a activation cascade involving dimerization with
ARNT, recruitment of p300/CBP, and binding to the hypox-
ia-responsive element (HRE) in the promoter of hypoxia-
responsive genes for transcriptional activation (Figure 1b).4

These remarkable advances have smoothed the way for
the identification of an ever-expanding body of hypoxia-
responsive genes that account for many aspects of tumor
hypoxia, including angiogenesis, glycolysis, low pH, and cell
survival. Yet, unanswered questions remain regarding how
hypoxia alters cell proliferation, induces genetic instability,
and reprograms cell metabolism and mitochondrial biogenesis,
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which are critical for tumor survival and progression. Recent
studies, however, have begun to shed new light on these
questions by unraveling the intricate role of the proto-
oncoprotein c-Myc in relation to HIF-a in adaptation to the
tumor microenvironment.26–29

c-Myc plays a central role in a transcription factor network
that regulates cellular growth, differentiation, apoptosis, and
metabolism.30,31 It is frequently overexpressed in human
cancers because of genetic rearrangements such as gene
amplifications and chromosomal translocation. Deregulated
c-Myc expression has been shown to drive vasculogenesis,
reduce cell adhesion, and promote metastasis.32 c-Myc can
activate and repress transcription of its target genes. When in
a binary complex with its partner Max, it activates transcription
by binding to an E-box consensus sequence. However, Max
also pairs with the c-Myc antagonist Mad1 or Max interactor 1
(Mxi1) to occupy the same E-box element for gene repression.
In addition, the c-Myc–Max can be recruited by Miz1 for gene
repression to core promoter sequences that lack the E-box
sequence. Other transcription factors including Sp1 can also
tether c-Myc to core promoter sequences.32 Although HIF-a
and c-Myc share common target genes, such as those
involved in glycolysis and angiogenesis, they apparently have
opposing effects on cell proliferation, mitochondrial biogen-
esis, and DNA repair. How both HIF-1a and HIF-2a employ
diverse mechanisms by either collaborating with or counter-
acting c-Myc to mediate adaptive responses to hypoxia, why
HIF-1a differs functionally from HIF-2a in engaging with
c-Myc, and how HIF-1a and HIF-2a sometimes have opposite
effects on c-Myc are discussed below. These interesting yet
complex findings suggest that target gene promoter, cellular
context, and hypoxic environment determine the way by which
HIF-a engages with c-Myc and consequently the outcome of
target gene expression.

HIF-1a Regulates Cell Cycle and DNA Repair Genes by
Counteracting c-Myc Activities Through c-Myc
Displacement

The c-Myc ternary repressive complex containing Miz1 is
known to repress the cyclin-dependent kinase inhibitor gene
CDKN1A (encoding p21cip1) for cell-cycle progression.33,34

By contrast, hypoxia upregulates CDKN1A gene in an
HIF-1a-dependent way.35,36 Furthermore, HIF-1a expression
is sufficient to stimulate CDKN1A expression in normoxia,
leading to cell-cycle arrest.26,37 Of particular interest is that
such gene upregulation, in contrast with the HIF-a activation
cascade (Figure 1b), is independent of HIF-1a DNA-binding
and transactivation domains.26 In fact, the N-terminal portion
of HIF-1a that harbors PAS domains (Figure 1a) is sufficient to
induce CDKN1A expression and cell-cycle arrest, suggesting
alternative mechanisms for HIF-1a activation of the CDKN1A
gene. Indeed, HIF-1a activates CDKN1A gene expression by
displacing the inhibitory c-Myc from binding to the CDKN1A
proximal promoter, resulting in gene derepression (Figure 2a).
Likewise, another cyclin-dependent kinase inhibitor gene
CDKN1B (encoding p27kip1), also suppressed by c-Myc, can
be upregulated by hypoxia by a similar mechanism.28,37 Thus,
HIF-1a antagonizes repressive c-Myc activity for gene
activation. It should be noted that unlike c-Myc displacement
from the MSH2 promoter (see below), the biochemistry of
c-Myc displacement by HIF-1a in the CDKN1A and CDKN1B
gene promoters has not been well characterized.

In the absence of Miz1, c-Myc forms an activating complex
with Max for gene activation.38 Would HIF-1a counteract an
activating c-Myc, thereby resulting in gene repression? Very
few genes have been reported to be downregulated by
hypoxia, and the underlying mechanisms hitherto have been
elusive. Evidently, hypoxia-induced gene repression can
hardly be explained by the direct role of HIF-1a in transcrip-
tional activation through binding to the HRE (Figure 1b).
However, several studies have shown that c-Myc displace-
ment accounts for hypoxic repression of c-Myc–activated

Figure 1 Schematic representation of the HIF-1 molecule and HIF-mediated
transcriptional activation of hypoxia-responsive genes. (a) HIF-1 is a heterodimer
composed of HIF-1a and ARNT. Both subunits contain bHLH (basic helix–loop–
helix), PAS (Per-ARNT-Sim), and TA (transactivation) domains. The PAS domain
comprises PAS-A and PAS-B subdomains. In addition, HIF-1a harbors an ODD
(oxygen-dependent degradation) domain. Four indicated HIF-1a amino-acid
residues are subject to post-translational modification. (b) In normoxia, HIF-a is
unstable and therefore incapable of transactivation. Under hypoxia, however, HIF-a
accumulates, leading to dimerization with ARNT, recruitment of p300/CBP, and
binding to the HRE (hypoxia-responsive element) in the promoter of hypoxia-
responsive genes, as indicated, for transcriptional activation

Figure 2 HIF-1a regulates hypoxia-responsive gene expression through c-Myc
displacement. (a) c-Myc acts as a repressor by binding to Miz1 at the initiator element
(INR) of the CDKN1A gene in normoxia. Hypoxia-induced HIF-1a displaces c-Myc
from the promoter, resulting in gene de-repression. (b) Activating c-Myc drives gene
transcription (as indicated) through interaction with the transcription factor Sp1 that is
bound directly to the GC-rich region of the promoter and direct binding to an E-box
element in the intron. Hypoxic stabilization of HIF-1a induces selective c-Myc
displacement and, in turn, gene repression. It is noteworthy that c-Myc binding to the
E-box remains intact under hypoxia in the CDC25A and NBS1 genes
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genes including the DNA repair genes MSH2, MSH6,27 and
NBS139 and the cell-cycle gene CDC25A;40 that is, these
c-Myc–activated genes are inhibited by hypoxia resulting from
c-Myc displacement (Figure 2b). Although all of these genes
share a common mechanism for gene repression, noticeable
differences have been observed that distinguish one from
another. For example, hypoxic downregulation of mismatch
repair genes MSH2 and MSH6 has the distinction of p53
dependence. Consistently, c-Myc displacement in the MSH2
and MSH6 promoters requires wild-type p53. By contrast,
hypoxic downregulation of NBS1 and CDC25A genes is p53
independent. Unlike the regulation of DNA repair genes,
HIF-1a expression alone neither inhibits CDC25A expression
nor induces c-Myc displacement, despite the requirement of
HIF-1a for mediating hypoxia-induced gene repression and
c-Myc displacement. Biochemical and promoter analyses are
needed to identify the binding partners responsible for all
these subtle distinctions.

A more intriguing question, however, is how HIF-1a
displaces an activating c-Myc from the target gene promoter.
As for the CDKN1A upregulation, HIF-1a uses its N-terminal
portion, the PAS-B subdomain (Figure 1a) in particular, for
gene repression.27,39 HIF-1a competes with c-Myc for binding
to the transcription factor Sp1 that directly interacts with
the MSH2 promoter. Such competition is consistent with a
tenuous interaction between HIF-1a and c-Myc in the
cytosol.26 Accordingly, c-Myc interacts with Sp1 for gene
activation in normoxia where HIF-1a levels are low. Under
hypoxia, HIF-1a occupies Sp1 via c-Myc displacement,
resulting in gene inactivation (Figure 2b).

The requirement of Sp1 for c-Myc displacement raises the
question as to whether c-Myc displacement occurs when
c-Myc is bound directly to an E-box element. Interestingly,
although both NBS1 and CDC25A genes harbor an E-box
element in their introns, no significant changes in c-Myc
binding to the E-box have been detected when gene
expression is suppressed.39,40 Therefore, it appears that
HIF-1a selectively targets c-Myc bound indirectly to DNA via
another transcription factor for displacement (Figure 2b).
Such a selective mechanism may explain the relatively weak
suppression (approximately two- to threefold) of these genes

by hypoxia, because of the remnant c-Myc-activating activity
bound to the E-box. Furthermore, it stands to reason that
HIF-1a might displace c-Myc from Sp1 more readily than from
an E-box element, assuming a stronger binding affinity to the
DNA sequence. However, more quantitative analyses of
c-Myc binding to the E-box element in c-Myc-activated genes
such as ODC, CCND2, and E2F1 (encoding ornithine
decarboxylase 1, cyclin D2, and E2F transcription factor 1,
respectively) have shown decreased c-Myc promoter occu-
pancy under hypoxia,28 suggesting the occurrence of c-Myc
displacement from the E-box element, albeit to a lesser
extent. Furthermore, HIF-1a also induces a shift in the
heterocomplex formation from activating c-Myc–Max to
repressive Mad1–Max or Mxi1–Max, thereby further contri-
buting to the inactivation of c-Myc target genes.28,41

HIF-2a, in Contrast with HIF-1a, Promotes Cell
Proliferation by Enhancing c-Myc Activities Through
Stimulation of Max Binding

Although both HIF-1a and HIF-2a follow the same HIF-a
activation cascade (Figure 1b) for gene activation, studies
have shown that HIF-2a possesses divergent (patho)physio-
logical functions despite striking similarities to HIF-1a in
amino-acid sequence and protein structure.42–47 At the
molecular level, several HIF-2a preferentially regulated
genes have been identified, including CCND1, EPO,
POU5F1, TGFA, and VEGFA (encoding cyclin D1, erythro-
poietin, octamer-binding transcription factor 4, transforming
growth factor a, vascular endothelial growth factor A,
respectively).46,48,49 However, how HIF-2a specifically targets
these genes remains unclear, although the involvement of
ETS transcription factors in HIF-2a target gene selection has
been suggested.50

Thus, given the high percentage of identity in amino-acid
sequence particularly to the HIF-1a PAS-B domain, does
HIF-2a also engage in c-Myc displacement? Interestingly,
HIF-2a is not involved in the c-Myc counteraction because of
its inability to compete with c-Myc for Sp1 binding.39

Accordingly, HIF-2a fails to repress any of the foregoing
DNA repair genes.27,39 What distinguishes HIF-2a from
HIF-1a in c-Myc displacement is a specific phosphorylation
of HIF-2a at codon T324 (equivalent to HIF-1a T322;
Figure 1a) by protein kinase D1, which prevents HIF-2a from
competing for Sp1 binding. Conversely, HIF-1a, which is not
subjected to phosphorylation at T322, is capable of c-Myc
displacement.

Interestingly, what is remarkable is not what HIF-2a cannot
do, but what it can. It has been uncovered that HIF-2a’s
‘hidden talent’ is to enhance c-Myc activities by stimulating the
interaction with Max.28 As a result, HIF-2a promotes, rather
than inhibits, cell-cycle progression in hypoxic cells by further
inhibiting the expression of cyclin-dependent kinase inhibitor
genes CDKN1A and CDKN1B (Figure 3a) and by augmenting
the expression of cell-cycle genes CCND2 and E2F1
(Figure 3b). Moreover, the effects of HIF-2a on gene
expression correlate with increased c-Myc target-gene
promoter occupancy in hypoxic cells, and HIF-2a facilitates
formation of c-Myc–Max complex through binding to Max.
Evidently, further molecular and biochemical characterization

Figure 3 HIF-2a, in contrast with HIF-1a, enhances c-Myc activity. (a and b)
Hypoxia-induced HIF-2a increases c-Myc binding to its partners (Miz1, Sp1, and
Max), resulting in further repression of CDKN1A and CDKN1B when c-Myc is
repressive (a) and enhanced transcription of CCND2 and E2F1 when c-Myc is
activating (b)
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of HIF-2a interactions with Max should provide a mechanistic
understanding of the functional difference between
HIF-1a and HIF-2a in cell-cycle regulation. It will also be
interesting to determine whether these opposing effects on
cell cycle by HIF-1a and HIF-2a occur in the same tumor cell or
if one dominates the other depending on their expression
levels.

HIF-a Controls Mitochondrial Biogenesis by Inhibiting
c-Myc-Mediated Transcription Through the Induction of
c-Myc Degradation and Mxi1 Expression

In contrast with the opposing effects on c-Myc by HIF-1a and
HIF-2a, the two HIF-a isoforms have been reported to work in
the same direction to inhibit mitochondrial biogenesis.29

Peroxisome proliferators-activated receptor g coactivator 1b
is a transcription factor that is regulated by c-Myc and
implicated in mitochondrial biogenesis. Study has shown that
HIF-a overexpression in a pVHL-deficient renal carcinoma cell
line inhibits PGC-1b expression, resulting in decreased
mitochondrial DNA content, mitochondrial mass, and oxygen
consumption.29 Both HIF-1a and HIF-2a are involved in the
transcriptional repression ofPPARGC1B (encoding PGC-1b).
In contrast to the direct role of HIF-1a in c-Myc target gene
repression (Figure 2b), the HIF-a isoforms inhibit PPARGC1B
expression in two indirect ways (Figure 4a). On the one hand,
HIF-a transcriptionally activates the MXI1 gene (encoding
Mxi1 that competes for Max binding).29,41 On the other hand,
HIF-a contributes to c-Myc proteolysis under severe or
prolonged hypoxia via the ubiquitin–proteasome pathway
without affecting MYC mRNA levels. Such a double-punch
mechanism of c-Myc inactivation has also been shown to
be responsible for transcriptional repression of other
c-Myc-activated genes such as CAD (encoding carbamoyl-
phosphate synthetase 2/aspartate trans-carbamylase/dihy-
droorotase) and ODC1. Therefore, both HIF-a isoforms

induce c-Myc degradation and MXI1 gene expression to
inhibit c-Myc activity.

Although the contribution of HIF-a to c-Myc degradation is
not well understood, the above studies support the notion that
c-Myc can be regulated at different levels under different
hypoxic conditions and perhaps in different cell types.
Treatment with mild hypoxic conditions at 0.5–1% oxygen
levels for less than 24 h leads to no significant change in c-Myc
protein levels;26–28 however, severe hypoxic conditions such
as 0.1% oxygen or prolonged treatment result in c-Myc
degradation without affecting MYC mRNA levels.29,41 Yet,
transcriptional downregulation of MYC gene by hypoxia has
also been suggested to be a possible mechanism controlling
the expression of AFP gene (encoding a-fetoprotein),51 which
is activated by c-Myc. Furthermore, given MYC gene being a
transcriptional target of the b-catenin/T-cell factor-4 complex,
such mechanism apparently accounts for the derepression of
CDKN1A gene in hypoxic colon cancer cells, where HIF-1a
disrupts the complex formation by competing for b-catenin
binding, thereby reducing c-Myc levels.52 Therefore, c-Myc
activity can be affected by various hypoxic conditions.

In c-Myc-Deregulated Cells, HIF-1a Cooperates with
c-Myc to Enhance Common Target Gene Expression

In human cancers, c-Myc deregulation is mostly a result of
genetic rearrangements that disable homeostatic mecha-
nisms controlling c-Myc protein levels. Thus, c-Myc may no
longer be subjected to hypoxic regulation as discussed above.
It has been shown that in a Burkitt lymphoma cell line where
c-Myc levels are controlled by tetracycline, HIF-1a cooperates
with, rather than antagonizes, c-Myc activities to enhance the
expression of shared target genes including HK2 (encoding
hexokinase 2), PDK1 (encoding pyruvate dehydrogenase
kinase isozyme 1), and VEGFA (Figure 4b).53 HK2 catalyzes
ATP-dependent phosphorylation of glucose to form glucose-
6-phosphate in the first step of glycolysis, whereas PDK1
inhibits mitochondrial respiration by inactivating pyruvate
dehydrogenase, which converts pyruvate to acetyl-CoA. It is
interesting to note that although coexpression of HIF-1a and
c-Myc enhances glucose metabolism, HK2 is the only
glycolytic gene to be upregulated in this system. The
expression of LDHA, another glycolytic gene best known to
be responsive to HIF-1a or c-Myc, is not further enhanced by
the two. Consistent with previous reports that the PDK1 gene
is a target of HIF-1a,54,55 c-Myc augments PKD1 expression in
the presence of HIF-1a for lactate production. In addition, HIF-
1a and c-Myc also cooperate to activate the VEGFA gene.
Such collaboration is associated with discrete and/or over-
lapping binding of HIF-1a and c-Myc to the target gene
promoters. It remains unclear, however, what determines the
interaction and/or cooperation between HIF-1a and c-Myc in
the promoters of these common target genes. Whether such
collaboration occurs for enhanced gene expression in other
c-Myc deregulated tumor cells is yet to be determined.
Furthermore, biochemical characterization of additional
interacting proteins may help reconcile the differences
between cooperative and antagonistic effects (discussed
above) of HIF-1a on c-Myc.

Figure 4 HIF-a inhibits the expression of c-Myc target genes in two
independent ways, while deregulated c-Myc cooperates with HIF-1a for the
activation of hypoxia-responsive genes. (a) Chronic hypoxia induces HIF-a-
dependent c-Myc degradation and transcriptional upregulation of the c-Myc
antagonist gene encoding Mxi1, which forms a complex with Max and recruits Sin3A
for the repression of c-Myc target genes as indicated. (b) Deregulated c-Myc
cooperates with HIF-1a under hypoxia to augment transcription of genes, as
indicated, through binding to E-box and HRE, respectively
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Concluding Remarks

The revelation of the intricate roles of c-Myc in hypoxic
responses has shed light on some of the fundamental aspects
of tumor growth and progression. Although c-Myc is regarded
as a central transcriptional hub in the control of growth and
proliferation through binding to several thousand genomic
loci,56 its activities are subjugated under hypoxic conditions by
HIF-a to serve the interests of tumor cells for adaptation and
survival. Various mechanisms are employed to control c-Myc
activities in an attempt to adjust to hypoxic conditions by
balancing the needs for cell proliferation and metabolism,
angiogenesis, DNA repair, and mitochondrial biogenesis.57–59

Regardless of c-Myc cooperation with or counteraction by
HIF-a, the identification of such HIF-a–c-Myc molecular
pathway might have just opened the door to delve further into
the cellular responses to the hypoxic microenvironment.
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