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T-cell death and cancer immune tolerance

B Lu*,1,2 and OJ Finn1,2

Cancer patients mount adaptive immune responses against their tumors. However, tumor develops many mechanisms to evade
effective immunosurveillance. T-cell death caused by tumor plays a critical role in establishing tumor immunotolerance. Chronic
stimulation of T cells by tumors leads to activation-induced cell death. Abortive stimulation of T cells by tolerogenic antigen-
presenting cells loaded with tumor antigens leads to autonomous death of tumor-specific T cells. Therapeutic approaches that
prevent T-cell death in the tumor microenvironment and tumor draining lymph nodes, therefore, should boost adaptive immune
responses against cancer.
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Paul Ehrlich theorized that the immune system is critical in
preventing the outgrowth of ‘overwhelming frequency’ of
cancers. He proposed that both native and adaptive immune
defenses play a role.1 Indeed, in mice, syngenic transplant
tumors could be shown to elicit specific and protective
immune responses against ‘tumor-specific antigens’.2 Based
on these findings, Macfarlane Burnet extended Paul Ehrlich’s
theory and coined the word ‘immunosurveillance’ to describe
the concept of an immunological resistance against cancer
development.3,4 It is believed that both innate and adaptive
immune responses are important in recognizing and eliminating
cancer cells.3,4 We now understand that cancer development
is a result of accumulation of somatic mutations and
dysregulated oncogenes and tumor suppressor genes. These
genetic abnormalities often create altered self-antigens in
cancer cells, many of which have already been shown to be
recognized by the immune system.5

Many recent studies provided strong support for the
existence of immunosurveillance. IFNg neutralization with a
specific monoclonal antibody abrogated the LPS-induced
rejection of a fibrosarcoma cell line Meth A in BALB/c mice.6

Besides transplanted tumor models, the antitumor activity of
IFNg was also observed in carcinogen-induced and sponta-
neous tumor models. Compared to wild-type mice, IFNg-
deficient mice and Stat-1-deficient mice developed carcinogen
methylcholanthrene-induced tumors at faster kinetics and
higher frequencies.7 IFNg-insensitive p53-deficient mice
developed a broader range of tumors compared with mice
lacking p53 alone.7 IFNg-deficient mice on the C57BL/6
background developed disseminated lymphomas.8 Some of
the effects of IFNg are mediated by the innate immune

system, particularly NK T cells 8 and gd T cells.9,10 IFNg is the
hallmark cytokine for Th1 cells and CD8þ T cells and is critical
for cell-mediated immunity and cell-mediated adaptive
immune responses which are important for immuno-
surveillance.11

In humans, the presence of certain subsets of lymphocytes
within the tumor can be a favorable prognostic sign. For
example, the presence of intratumoral T cells correlates with
better clinical outcome in advanced colorectal carcinoma.12 A
higher density of memory T-cell markers within a tumor is
favorably associated with overall survival of colorectal cancer
patients.13 Collectively, these data support the immuno-
surveillance hypothesis.

Despite the presence of immunosurveillance, cancers can
develop in apparently immunocompetent animals and humans.
Avoidance of immunosurveillance is proposed to be the
seventh hallmark of cancer.14,15 This happens through many
well-characterized mechanisms including induction of T-cell
tolerance by autochthonous tumors,16 cancer immuno-
editing,17 and development of an immune suppressive cancer
microenvironment.18 Therapeutic cancer vaccines or adop-
tive immunotherapy are being developed and tested as
potential approaches to strengthen the immune responses
after tumor arise in order to slow their progression and prevent
their recurrence. So far immunotherapeutic approaches have
been only partially successful.19 It remains important, there-
fore, to better understand how tumors manage to out-
maneuver immune recognition and elimination in the first
place, and how they ultimately progress to widely dissemi-
nated cancer. In this review, we focus on how tumors evade
effective immunosurveillance by causing T-cell death.
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T-cell Death Pathways

Depending on their prior experience with antigen, peripheral T
cells can be divided into three categories, namely naı̈ve T
cells, effector T cells, and memory T cells. Naı̈ve T cells
become activated when they encounter antigen-presenting
cells loaded with the right antigen. This is followed by increase
of antigen-specific T-cell numbers due to elevated prolifera-
tion and reduced cell death. During the process of active
proliferation, activated T cells differentiate into different types
of effector T cells. They are primarily responsible for antigen
clearance. A subset of these cells then preserves the ability to
quickly respond and eradicate the same antigen that may be
encountered in the future, due to further differentiation into
memory T cells.

Apoptotic T-cell death. The number of T cells is tightly
regulated by several cell death mechanisms.20 Apoptosis
has been defined as type I programmed cell death, a term
which, in contrast to necrosis, implies active participation of a
dying cell in its own death. This process can be initiated in
response to a range of intrinsic and extrinsic signals. A
number of changes in cellular morphology can help to define
apoptosis. In the apoptotic cell, chromosomes condense, the
nucleus fragments, cytoplasmic volume decreases,
organelles compact, the cell membrane fuses with the
endoplasmic reticulum, and the cell finally fragments into
numerous ‘apoptotic bodies,’ which are engulfed by
surrounding cells.21 These morphologic changes are
accompanied by other subcellular indicators of apoptosis,
including the exposure of phosphatidylserine on the external
surface of the cell membrane and a decrease in
mitochondrial transmembrane potential.22 Caspase
activation is the critical biochemical event during apoptosis
and is a hallmark of apoptosis. Caspases cleave vital cellular
proteins (e.g. lamin, gelsolin) and proteolytically activate
latent enzymes that degrade cellular constituents, such as
caspase-activated DNase (CAD), also called DFF40 (DNA
fragmentation factor of 40 kDa).23

The regulation of death of activated T cells and memory T
cells and how it might be influenced by the tumor microenviron-
ment is quite relevant to tumor evasion of immunosurveil-
lance. Two main types of cell death are functionally defined in
activated T cells, namely activation induced cell death (AICD)
and activated T-cell autonomous death (ACAD)24 (Figure 1).
AICD describes a phenomenon wherein T-cell hybridomas or
thymocytes die by apoptosis following activation through their
CD3 molecules. It is now known that the in vitro death of T-cell
hybridomas and of activated T cells after artificial stimulation
through their TCRs is driven mostly by a subset of tumor
necrosis factor receptor (TNF-R) family members that
includes Fas, TNF-R1, DR3 (TRAMP, wsl-1, APO-3, LARD),
DR4 (TRAIL-R1, APO-2), DR5 (TRAIL-R2, TRICK2, KILLER),
and DR6, referred to as ‘death receptors’.25 Engagement of
the T-cell receptor (TCR) on T hybridoma cells or activated
normal T cells induces expression of both Fas/APO-1 and
its ligand, resulting in autocrine or paracrine activation of
apoptosis. Fas activation results in the rapid recruitment of
FADD to the cytoplasmic membrane. FADD then brings in
pro-caspase 8 forming the death-inducing signaling complex

(DISC).26 Next, proteolytic cleavage of pro-caspase 8 results
in its activation and subsequent release from the DISC into the
cytoplasm. Depending on the cell context, the downstream
signal of caspase 8 is propagated in one of two ways. In so
called type I cells,26 induction of apoptosis is accompanied
by activation of large amounts of caspase 8 by the DISC.
Caspase 8 then rapidly cleaves and activates caspase 3,
leading to the effector stage of apoptosis. In type II cells, on
the other hand, DISC formation is strongly reduced and a
relatively small amount of activated caspase 8 cuts and
activates the proapoptotic Bcl-2 family member Bid.26

Truncated Bid induces mitochondrial pore formation via Bak
or Bax, resulting in the release from mitochondria of
proapoptotic molecules such as cytochrome c and Smac/
DIABLO.27 Cytochrome c can subsequently form a complex
with Apaf-1 and pro-caspase 9 in the cytoplasm, to form the
apoptosome, which can then activate effector caspases such
as caspase 3 and caspase 7.27

The Fas pathway functions in vivo to hedge off immune
responses against self-antigens. In both human and mice,
Fas or FasL deficiency causes the autoimmune lympho-
proliferative syndrome (ALPS), a systemic autoimmune dis-
ease.28 The clinical manifestations of ALPS include massive
lymphadenopathy, splenomegaly, autoimmune hemolytic
anemia, thrombocytopenia, and other systemic autoimmune
symptoms.28 In addition, large numbers of CD4 CD8 double-
negative T cells are present in ALPS patients. ALPS patients
also have increased numbers of circulating B cells and a
polyclonal hypergammaglobulinemia.28 Besides systemic
autoimmunity, the Fas pathway is also involved in the
resolution of organ-specific autoimmunity. Mice showed a
delay in their recovery from autoimmune experimental allergic
encephalomyelitis (EAE) when the Fas pathway is blocked on
T cells.29 Given the role of the removal of the Fas/FasL
pathway in these autoimmune disorders, there is a possibility
that the Fas pathway can be manipulated to enhance immune

Figure 1 Signaling pathways for AICD and ACAD in T cells. AICD and ACAD
are functionally defined cell death mechanisms for activated T cells. AICD is
triggered by persistent stimulation of T cells through TCR. In many cases, AICD is
mediated by death receptors. ACAD is mainly triggered by the lack of growth factors
and cytokines, which provide the survival signal for T cells
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responses to tumor antigens which bear many similarities to
self-antigens.

An alternative pathway to death receptors is the pheno-
menon described as ACAD,24 also called cytokine withdrawal
cell death and spontaneous T-cell death.25 ACAD involves
the BCL-2-family-regulated pathway (also known as the
intrinsic or mitochondrial pathway) and is responsible for the
death of the majority of T cells after cessation of cytokines
or growth factors.24,30 Members of the Bcl-2 family contain
Bcl-2 homology (BH) domains. The prosurvival family
members Bcl-2, Bcl-xL, Bcl-w, A1/Bfl-1, and Mcl-1 comprise
up to four such homology domains (BH1–4). The Bcl-2
family has two proapoptotic factions. One proapoptotic
subgroup possesses three BH domains (e.g., Bax, Bak
(Bcl-2 antagonist/killer), and Bok (Bcl-2-related ovarian
killer)).30 The other subgroup includes the BH3-only proteins
Blk (Bik-like killer)/Bik (Bcl-2–like killer)/Nbk, Bid (Bcl-2-
interacting domain death agonist), Bad (Bcl-2 antagonist of
cell death), Harakiri/death protein 5, Noxa/Apr, Bmf (Bcl-2-
modifying factor), Puma (p53-upregulated modulator of
apoptosis)/bbc3, and Bim (Bcl-2-interacting mediator of cell
death)/Bod (Bcl-2-related ovarian death gene). All BH3-only
proteins induce apoptosis when overexpressed in cultured
cells.30 Bcl-2-deficient mice developed pleiotropic abnormal-
ities including atrophic thymus and spleen with accelerated
apoptotic cell death of lymphocytes.31 Overexpression of
Bcl-2 does not protect activated T cells from Fas-mediated
death; likewise, Fas-deficiency fails to protect T cells from
ACAD, which is prevented by Bcl-2 overexpression.24,30

Experiments using Bim-deficient mice further confirm the role
of Bcl-2 pathway in ACAD. Bim deficiency results in resistance
to cytokine withdrawal cell death. When cultured without
cytokines (no treatment) or treated with ionomycin, bim�/�
pre-T cells survived much better than WT cells, similar to what
has been observed in Bcl-2-overexpressing T cells. The
bim�/� pre-T cells were, however, as sensitive as the WT
cells to treatment with Fas ligand. In addition, the absence
of Bim dramatically augmented survival of the resting T cells
and markedly protected activated T cells against cytokine
withdrawal.32

The Bcl-2 pathway is important for death of activated
T cells following acute immune responses.20,33,34 Primary
evidence was obtained using the staphylococcal enterotoxin
B (SEB) challenged mouse model. At the end of the SEB-
induced T-cell response, the majority of the activated Vb8
T cells died. Overexpressing Bcl-2 prevented T-cell deletion,
but Fas or TNF-R signaling played no role. In addition,
T cells from Bim-deficient mice were resistant to SEB-induced
deletion.34 Further work confirmed the general thesis
of this result in acute herpes simplex virus (HSV) infection
mouse model. Compared with that in wild-type mice, similar
numbers of HSV-specific CD8þ T cells were generated
in bim�/� mice during the peak of infection. After the
clearance of HSV, the number of HSV-specific CD8þ T cells
decreased over time in wild-type mice. In contrast,
the HSV-specific CD8þ T cells persisted in bim/ mice
long after HSV clearance.35 Collectively, these studies
established that the Bcl-2 pathway mediates
T-cell death during the contraction phase of acute T-cell
responses.

T-cell Subsets and their Differential Susceptibilities to
Cell Death Stimuli. Cell death is regulated differently in
subsets of T cells. Compared to naı̈ve T cells, effector/
memory T cells express higher levels of death receptors such
as Fas and TNF receptors.28 The main executioners such as
caspase 3 and caspase 6 are also highly expressed in
effector T cells but not expressed in naı̈ve T cells.36 The
death receptor pathway is present in activated T cells but not
in naı̈ve T cells. Therefore, the death receptor pathway is
associated with TCR signaling and is driven by sustained
antigen engagement. Similar to death receptor members,
Bcl-xl, Bcl-a1b, and Bcl-a1d are also highly expressed when
TCR is engaged, suggesting their role in protecting antigen-
engaged T cells against cell death, as these genes are not
expressed in resting naı̈ve T cells.36 In striking contrast, Bcl-
2, which is expressed in high levels in resting naı̈ve and
memory T cells, is downregulated after TCR stimulation.20

During T-cell activation, proapoptotic members of the Bcl2
gene family are regulated not at the transcription levels but at
post-translational levels.24 The expression pattern of death
receptors and Bcl-2 is in agreement that AICD mediates the
TCR-driven death of T cells and ACAD facilitates the non-
TCR-driven death of T cells.

In culture, T cells making IFNg such as Th1 cells and CD8þ

T cells are intrinsically more prone to apoptosis than Th2 cells
which make Th2-type cytokines such as IL-4, IL-5, and
IL-13.28 Expression profiling showed that death receptors and
caspase 3 are more highly expressed in Th1 cells than in Th2
cells.36 Therefore, hyperactivated Th1 cells are intrinsically
self-limiting by apoptotic mechanisms.37,38 TCR-induced
apoptosis in CD4þ cells primarily involves Fas, whereas
apoptosis in CD8þ T cells also depends on TNF signaling via
the p75 receptor (TNFR2).28

Autophagy and T-cell death. The term ‘apoptosis’ has long
been used as a synonym for programmed cell death.
Ultrastructural data suggested the existence of alternative
types of programmed cell death, most notably autophagic
cell death.39 Autophagy is a cellular process by which a
portion of the cytosol or entire organelles become
sequestered in double membrane vesicles known as
autophagosomes.40 Autophagosomes are subsequently
fused with lysosomes, thereby generating single-membrane
autophagolysosomes and leading to cargo degradation.
Autophagy is an important catabolic mechanism that
recycles building blocks for basal macromolecular synthesis
when cells are under nutrient starvation conditions, degrades
damaged organelles, and eliminates pathogens that invade
cells.41 The extremity of this catabolic process leads to type II
programmed cell death, also called autophagic cell death.39

Two recent studies implicated autophagy in driving T-cell
death. One study found that HIV-1 envelope glycoproteins
(Env), expressed at the surface of infected cells, induce death
of uninfected CD4þ T cells by inducing autophagy and an
accumulation of Beclin 1 via CXCR4. Blockade of autophagy
at different steps, either by drugs (3-methyladenine and
bafilomycin A1) or by siRNAs specific for Beclin 1/Atg6 and
Atg7 genes, totally inhibited cell death. Furthermore, CD4þ

T cells still underwent Env-mediated cell death with auto-
phagic features when apoptosis was inhibited. Another study
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demonstrated that cytokine withdrawal Th2 cell death is
partially mediated by autophagic cell death.42 This finding is in
line with another study involving immunization of mice with
sheep red blood cells; there was a significant increase in both
the number and the size of germinal centers in the spleens
of beclin 1þ /– as compared with beclin 1þ /þ mice.43

Together, these studies suggest that autophagy inhibits
adaptive humoral immune responses. Besides cell death,
autophagy can be a prosurvival mechanism for T cells. In fact,
peripheral T cells deficient of Atg5, a critical gene for
autophagy, showed dramatic increase of spontaneous cell
death.44 To reconcile the conclusions of these studies, we
propose that autophagy plays dual roles in T-cell life and
death. In the case of T-cell death during growth factor
withdrawal, T cells first go through a quick death mediated
by apoptosis. Autophagy plays a prosurvival role at this phase
by degrading proteins to provide amino acids for the survival
of T cells. In T cells that have survived apoptosis, autophagy
plays a pro-death role and causes further reduction of cell
numbers (Figure 2).

T-cell Death and Tolerance Induction by Tumor Antigens

Adaptive immune response against tumors is initiated in the
tumor draining lymph nodes (TDLNs) into which soluble tumor
antigens, tumor fragments or apoptotic tumor cells drain or are
carried by dendritic cells (DCs) infiltrating the tumor site. Many
of these molecules are capable of providing the ‘danger’ signal
required for DC stimulation and efficient presentation of tumor
antigens to naı̈ve T cells.45 If appropriately stimulated, naı̈ve T
cells become activated effector cells that can then migrate to
the tumor site to kill cancer cells. However, it is now apparent
that at least in advanced cancer, in TDLNs, DCs are
prevented from proper maturation and activation46 or are
actively immunosuppressive. These DCs, instead of activating
T cells induce tolerance to tumor antigens (Figure 3). T-cell
death is actively involved in the induction of tolerance in
TDLNs.

Cross-tolerance to tumor antigens. Many tumor antigens
are capable of eliciting T-cell responses when their
expression levels get elevated above the normal threshold
of detection, such as for example as a result of increased
apoptosis of tumor cells. Tumor draining lymph nodes are

believed to be the primary site where adaptive immune
responses are initiated against tumor antigens. Tumor-
specific naı̈ve CD4þ T cells can be stimulated by DCs’
presenting tumor antigens through MHC class II. Naı̈ve
CD8þ T cells can also be stimulated by DCs’ cross-
presenting tumor antigens by MHC class I.47 In many
cases, in the tumor microenvironment, the presentation of
tumor antigens is carried out by not fully activated, immature
or immunosuppressed DCs leading to anergy or deletion of
tumor-specific T cells. A similar problem can be encountered
with vaccines, where tumor-induced immunosuppression of
either DC or T-cell function leads to impaired responsiveness
to vaccination. This type of tumor microenvironment
triggered tolerance is called cross-tolerance. During cross-
tolerance, tumor antigens are presented by DCs and
recognized by T cells. However, T-cell activation is
suboptimal and their proliferation is not sustainable. Most
tumor antigen-specific T cells under these circumstances
quickly disappear due to apoptosis.48,49 Therefore,
programmed cell death is one pathway tumor cells exploit
to deplete T cells and to avoid immunosurveillance.48,49

Recent studies on the tolerance to tissue-associated self-
antigens have shed light on the mechanism of cell death that
is involved in cross-tolerance. Like tumor antigens, tissue-
associated self-antigens are also cross-presented and the
immune system utilizes this mechanism to achieve peripheral
tolerance. Cross-presentation of self-antigen leads to deletion
of naı̈ve, autoreactive CD8þ T cells.50 Both AICD and ACAD
pathways were tested for their involvement in T-cell elimina-
tion in a model self-antigen expressed in the b cells of the
pancreas.51 Deletion of CD8þ T cells was prevented by
overexpression of Bcl-2, indicating that cross-tolerance was
mediated by the Bcl-2 inhibitable pathway. In addition,
Bim-deficient T cells were not deleted in response to cross-
presented self-antigen, strongly implicating Bim as the
proapoptotic mediator of cross-tolerance. In contrast,
the Fas pathway is not required for cross-tolerance.51 Based

Figure 2 The dual roles of autophagy in T-cell life and death during growth
factor withdrawal. Effector T cells are susceptible to apoptosis when they are
deprived of growth factors or nutrients. Autophagy plays a prosurvival role to
antagonize apoptosis. However, autophagy induced in T cells that have survived
apoptosis mediates T-cell death and leads to further reduction of T-cell number

Figure 3 T cell fates after reacting with antigen presenting cells loaded with
tumor antigens. After T cells interact with mature DCs, they differentiate into effector
cells. When T cells encounter tolerogenic DC antigen-presenting cells, they become
cell cycle arrested, and then either enter a nonresponsive state (anergy), or go
through apoptosis. When T cells encounter immature DCs, they proliferate briefly,
and then die or become anergic
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on the similarity between tissue-associated self-antigens and
tumor antigens, it is reasonable to expect that T cells specific
for tumor antigens are tolerized by a similar mechanism.
Therefore, ACAD is likely a main mechanism that leads to
T-cell deletion during cross-tolerance. This is likely due to the
lack of appropriate signals from APC after antigen recognition.
These signals could be co-stimulatory signals or cytokines.

T-cell suppression by catabolizing tryptophan and
arginine. Enzymes that regulate the availability of amino
acids are involved in the induction of tolerance of tumor
antigens. The enzyme indoleamine 2,3-dioxygenase (IDO),
which catalyzes the rate-limiting step of tryptophan
degradation along the kynurenine pathway,52 was shown to
be induced in tolerogenic DCs such as plasmacytoid DCs 52

and a subset of CD8aþ splenic DCs (Figure 3).53,54 An
increased number of IDO-expressing cells in TDLNs
correlates with a worse clinical outcome.52 The activity of
IDO is critical for the tolerogenic functions of IDOþ DCs.52,54

IDO can be induced on DCs and macrophages either by
reverse signaling of B7-1 and B7-2 or by Th1 cytokine
IFNg.54–56 Therefore, IDO is a self-limiting mechanism
induced by Th1 responses.

Many human tumors also express IDO (Figure 4). Expres-
sion of IDO by immunogenic mouse tumor cells prevents their
rejection by mice, which have been vaccinated against the
same tumors. Injecting mice with an inhibitor of IDO can partly
reverse such effect.57 As discussed earlier, IDO expression
by tumor cells can also lead to T-cell death.

Both the reduction of local tryptophan levels and the
production of tryptophan metabolites mediate the immuno-
suppressive effects of IDO.52 Naı̈ve murine T cells or human
total T cells activated in chemically defined tryptophan-free
media fail to synthesize DNA (Figure 3).58,59 Tryptophan
deprivation caused cell cycle arrest of activated T cells in
mid-G1 phase.58,59 These arrested but activated naı̈ve T cells
cultured in tryptophan-free media are much more sensitive to
Fas-mediated cell death 58 when these cells are incubated
with an agonistic anti-Fas antibody. Whether the Fas pathway
is involved in deleting IDO-tolerized T cell in vivo remains to be
carefully examined.

Tryptophan metabolites exert immunosuppressive effects
on T cells by inhibiting proliferation or by causing cell death.60

3-Hydroxyantranylic acid (3-HAA) and quinolinic acid (QUIN)
are L-tryptophan metabolites formed along the metabolic
pathway known as the kynurenine pathway, in which IDO
catalyzes the initial and rate-limiting step.61 3-HAA and QUIN
induced the apoptosis in vitro of murine thymocytes and of
Th1 but not Th2 cells. Fas is dispensable for the cytotoxic
effects.62 The pan-caspase inhibitor zVAD and the caspase 8
inhibitor were able to block cell death triggered by 3-HAA and
QUIN. Cytochrome c release was observed in T cell treated
with 3-HAA and QUIN, suggesting the involvement of
the mitochondrial death pathway.62 Therefore, one of the
mechanisms of IDO-mediated suppression is due to the killing
of Th1 cells by tryptophan metabolites.

L-arginine plays an important role in regulating immune
responses by myeloid suppressor cells.63 It is metabolized in
macrophages, endothelial cells, hepatocytes, kidney cells,
and certain tumors by three enzymatic pathways, the

inducible nitric oxide synthase (iNOS), arginase I (ASE I),
and arginase II (ASE II).63

L-arginine is metabolized by iNOS
to produce citrulline and nitric oxide, which is one of the major
cytotoxic mechanisms in these cells.64 Alternatively, ASE I
and ASE II metabolize L-arginine to L-ornithine and urea.65

The expression of ASE I and iNOS in murine myeloid
suppressor cells is differentially regulated by Th1 and Th2
cytokines.66,67 IFN-g upregulates iNOS, whereas IL-4, IL-10,
and IL-13 induce ASE I.66,67 Many tumors can induce myeloid
suppressor cells within themselves and in the peripheral
immune system. Myeloid suppressor cells are believed to
inhibit tumor-specific immune responses by depleting arginine
and generating NO. Reduced levels of arginine inhibit antigen-
specific proliferation of T cells. In addition, both iNOS and
ASEI are important in causing T-cell death. However, the
detailed mechanism of cell death is not known. In light of
studies on IDO, the arrest of cell cycle can render T cells more
susceptible to cell death stimuli such as FasL.

The availability of amino acids is well known to regulate
autophagy.68 High levels of tryptophan reduce autophagy and
low levels likely will induce autophagy in T cells. Arginine does
not regulate autophagy, at least in liver cells.68 However, its
role in T-cell autophagy should be examined because T cells
seem to be quite sensitive to levels of arginine. Interestingly,
the lack of either arginine or tryptophan induces the activity of
Gcn2 which mediates the suppressive effect on T cells.52,69

Another member of the Gcn2 family PKR was shown in
macrophages to be critical in inducing autophagy.70 There-
fore, Gcn2 is expected to play a similar role in T cells.
Autophagy is a stress response to the lack of nutrients such as
amino acids.68 Autophagy is likely important for the short-term
survival of T cells in TDLNs and the tumor microenvironment
because this process generates essential amino acids by
degrading cellular protein for essential functions of cells.
However, extensive and sustained autophagy will likely lead
to eventual cell death.39 Therefore, it is also probable that
autophagy will be involved in mediating cell death when T cells
are incubated without these essential amino acids for
prolonged periods of time.

CD4þ T cells help CTL responses. Because killer T cells
can directly destroy cancer cells, boosting antitumor CTL
responses is the priority for immunotherapy of cancer. Help
provided by CD4þ T cells is considered to ‘license’ DCs to
activate CD8þ T cells.71 Therefore, an effective CD4þ T-cell
response is believed to be essential to prevent tolerance
induction by tumor antigens.72 Recent studies revealed that
during acute viral infections, CD4 help has a dramatic impact
on the memory recall responses of CD8þ T cells.71 CD4þ

T cells are not required for primary expansion of CD8þ T
cells and their differentiation into cytotoxic effectors in
response to acute infection. However, secondary CTL
expansion, a hallmark of adaptive immune response, is
dependent on the presence of CD4þ T cells during, but not
after, priming.71 The genetic program imprinted on CD8þ T
cells by helper T cells appears to involve apoptotic pathways.
Addition of caspase inhibitors quinoline-Val-Asp-CH2-
difluorophenoxy (qVD-OPh) and benzyloxycarbonyl-Val-Ala-
Asp-fluoromethyl ketone (zVAD-fmk) restores secondary
expansion of CD8þ T cells primed in the absence of CD4
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help. Neither expression of Bcl-2 or Bcl-xL nor the absence of
Fas (lpr/lpr) or TNFR (TNFR1�/�) helped recover secondary
expansion in helpless CD8þ T cells. Effector T cells from
Trail-deficient mice, however, proliferated in response to
secondary stimulation regardless of CD4þ help. Therefore,
CD4þ T cells help program CD8þ T cells to suppress
TRAIL-mediated AICD during memory responses. Lack of
CD4þ T cells help is also involved in the deletion of CTLs in
the chronic infection setting.71 The persistent presence of
low levels of antigens in these settings is similar to some
cancers. Therefore, it is possible that CTLs against tumor
antigens are deleted when helper responses are absent.73

Therefore, tolerance of CD4þ T cells by tumor will affect
CD8þ T-cell recall responses by the death receptor pathway.

Killing Effector T cells by Tumors

Tumor produced effector molecules that kill tumor-
infiltrating T cells. Cancer-specific effector T cells migrate
to and infiltrate tumors. Killer T cells can recognize and kill
their target transformed cells. Th1 cells can either serve as
killer cells or help develop a delayed type hypersensitivity
reaction within a tumor. The presence of Th1-type cells
marker has been associated with positive prognosis in many
type of cancers. Therefore, the presence of functional
effector T cells within tumor mass is important for
successful immunosurveillance. FasL expressed on the
surface of T cells has an important role in mediating the
death of Fas-expressing tumor cells. However, many cancer
cells have evolved to develop resistance to FasL/Fas-
mediated killing. Moreover, they gained the ability to use
FasL/Fas pathway to counteract T cells (Figure 4).

Many studies have demonstrated FasL expression in many
diverse types of human cancer, where it may contribute to
tumor immune evasion. For example, FasL expression in
colon cancer has been demonstrated by several groups.74

FasL expression was also found in head and neck cancer,
ovarian cancer, melanoma, and renal cell carcinoma.74 The
expression of FasL on tumors coupled with the fact that many
tumors are resistant to Fas-mediated apoptosis support the
hypothesis that tumors use FasL to launch a preemptive
attack against activated T cells as a way to avoid destruction.75

Therefore, FasL helps make tumor tissues an immuno-
privileged site.

There is a wealth of experimental evidence that FasL on
tumors is functional. FasL expression has been found on
tumor cells in areas of intense lymphocytic infiltrates. Many
apoptotic lymphocytes were observed in these regions. This
same phenomenon has been found in many cancers such as
esophageal tumors, head and neck cancer, and ovarian
carcinoma.74 In vitro, co-culture of FasLþ tumor cells with T
lymphocytes induced apoptosis in activated Fasþ lympho-
cytes.76,77 Apoptosis was blocked by anti-FasL Abs or Fas-Fc
protein capable of binding and neutralizing FasL.76

FasL expressed on tumors can also be secreted. Because
the soluble form is not a potent inducer of apoptosis,
conversion from the membrane bound form to the soluble
form was believed to downregulate the FasL function.74 In
contrast, injection of soluble FasL into mice caused liver
damage indicating functional potential.78 This discrepancy
was resolved by a study that found that extracellular matrix
proteins interact with soluble CD95L and potentiated its
proapoptotic activity.79 Therefore, the soluble form of FasL
made by tumor cells can further promote the suppressive
tumor microenvironment by binding to the extracellular matrix.
This FasL-decorated extracellular matrix would be fully
capable of mediating the killing of tumor-specific effector T
cells infiltrating the tumor site.

It has already been established that FasL-triggered T-cell
death only happens in highly activated effector T cells upon
encountering their antigens.80,81 Resting T cells are not
susceptible to FasL-driven apoptosis.80,81 Therefore, expres-
sing FasL on the surface of tumor cells or on the extracellular
matrix surrounding the tumor will ensure the most efficient
elimination of tumor-specific highly active effector T cells, but
preserve less active or suppressed T cells in the tumor mass.
Therefore, by selection of perhaps initially only a small
number of tumor cells with FasL expression, tumors can grow
progressively by weakening the immune responses to the
point of immune evasion.

The significance of tumor-FasL counter attack is supported
by the clear prognostic value that FasL expression has in
many cancers. Analysis of the expression of FasL mRNA and
protein in paired tissue samples of normal colonic mucosa (N),
primary colorectal carcinomas (T), and their metastases (M)
revealed that metastasizing subpopulations of colorectal
tumor cells express FasL more frequently than the primary
carcinomas.74 The status of Fas and Fas ligand expression
had prognostic significance for disease-free survival and
recurrence of hepatocellular carcinoma.74 In colorectal
carcinoma, the cases with a high apoptosis index of tumor
infiltration T cells had a significantly poorer prognosis than

Figure 4 T-cell death in the tumor microenvironment. Tumors contribute to T-
cell death by expressing death receptors, PDL1, galectin-1, etc. In addition, cancer
cells and DCs express IDO that depletes tryptophan and generate tryptophan
metabolites to cause T-cell death. Moreover, tumor-infiltrating macrophages
upregulate iNOS and AseI, which deplete arginine and generate arginine
metabolites to cause T-cell death. Depletion of amino acids might also lead to
autophagy-mediated cell death
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those with a low apoptosis index.74 Similar findings have been
reported in breast cancers.74

The FasL serving as immune evasion mechanism for
tumors is consistent with its role in maintenance of the
immune-privileged status in the eye82 and testis.83 To
confound the situation, several studies suggested that FasL
on tumors could be proinflammatory. Transplanted tumor
cells that express FasL were quickly rejected84,85 in mice
compared to tumors lacking this molecule. It turned out that
the rejection in these cases was largely mediated by
infiltrating neutrophils.84 These results seem to be contra-
dictory to the hypothesis that FasL is critical for tumor immune
evasion. However, it is now clear that different tumors create
different microenvironments characterized by the presence or
absence of various cytokines. One of the important cytokines
that may determine the ultimate importance of the FasL
expression is TGFb1. One study showed that tumor rejection
by neutrophils was prevented by adding TGFb1 to the tumor
microenvironment.86 Therefore, FasL and TGFb together
generate a different microenvironment than either one alone
or in combination with other cytokines. In most cases,
however, the cytokine combinations promote immunologic
tolerance.

Signals other than Fas also mediate T-cell killing by
malignant cells (Figure 4). The TNF receptor family member
CD27 is constitutively expressed on the majority of T cells and
on subsets of antigen-experienced B cells, NK cells, and
hematopoietic progenitor cells.87 In contrast, expression of its
ligand CD70 is tightly regulated and only transiently ex-
pressed on activated T cells and DCs.87 Diminished expan-
sion of antigen-specific T cells in primary and memory T-cell
responses to influenza virus infection was observed in
CD27–/– mice.87 However, chronic activation of CD27 in
mice resulted in depletion of the naı̈ve T-cell compartment and
subsequent death from opportunistic infection.88 These data
again demonstrate that chronic overstimulation of an other-
wise activating signaling pathway tolerizes immune re-
sponses. AICD mediated by CD27 signaling is believed to
cause T-cell deletion. Siva, a proapoptotic protein, can bind to
the cytoplasmic tail of CD27 and has been implicated in
apoptosis induction through CD27 via a caspase-dependent
mitochondrial pathway.89 Immune stimulatory signals trans-
duced via CD27 are mediated by the adaptor proteins TNF
receptor-associated factor 2 and 5.87 CD70 protein was
detected by immunocytochemistry in glioblastomas and
anaplastic astrocytomas. CD27 expression was not detected
in any glioma cell line.90 Glioblastoma cell lines cocultured
with T cells induced lymphocyte death. CD70 is responsible
for initiating T-cell death via the receptor-dependent path-
way.90 Therefore, at least some cancer cells mediate
immunosuppression by promoting T-cell death via tumor-
associated CD70.

PDL1 is also highly expressed in various tumor tissues.
Blocking PDL1 function has been shown to relieve immune
exhaustion in chronic infection. Tumors can be quickly
eliminated when PDL1 function is neutralized.91 Patients with
PDL1-positive tumors had poor prognosis and shorter
survival.92 PDL1 induction of T-cell death was one of several
proposed mechanisms for its role in immune suppression.91

This is supported by the inverse correlation between PDL1

expression on tumor cells and the number of tumor-infiltrating
lymphocytes (TILs).93

Besides antigen-specific and co-stimulatory receptors,
T-cell surface glycans can react with tumor or tumor stroma-
associated lectins to cause T-cell apoptosis. One such lectin,
galectin-1, has a relatively low affinity for single N-acetyl-
lactosamine sequences; however, galectin-1 binds with high
avidity to glycans containing multiple N-acetyllactosamine
units and preferentially binds glycoproteins containing linear
polylactosamine sequences.94 Galectin-1 sensitizes human T
cells to Fas (CD95)/caspase 8-mediated cell death.95 Human
squamous laryngeal cancer patients that display high levels of
galectin-1 have worse prognoses than those with laryngeal
cancers with low levels of galectin-1 expression.96 Elevated
expression of galectin-1 in carcinoma-associated stroma
predicts poor outcome in prostate carcinoma patients.97 Head
and neck squamous cell carcinomas that stained strongly
for galectin-1 had significantly lower levels of T cells (as
assessed by CD3 staining) than those with negative or
weak staining for galectin-1. Galectin-1 expression negatively
correlated with survival in head and neck cancer patients.98

All these results are consistent with the idea that
galectin-1 contributes to tumor immune evasion by killing
effector T cells.

AICD and T-cell suicide in the tumor microenviron-
ment. Effector T-cell suicide is an important self-limiting
mechanism. AICD is a major mechanism that eliminates
hyperactivated Th1 cells and CD8þ T cells from the sites of
an immune response, thereby limiting immune pathology.
Persistent triggering of TCR is believed to upregulate
FasL, caspases and downregulate Bcl-2 and FLIP, the
inhibitor of apoptosis, which then leads to massive T-cell
apoptosis.81 The tumor mass is not only an immune
suppressive environment, but is also a source of
overwhelming amounts of antigens that chronically
stimulate T cells that infiltrate it. Chronic activation is
believed to result in exhaustion of T cells such as in the
case of HIV infection and HBV infection. One mechanism of
exhaustion is T-cell depletion, very likely through AICD.
Ample evidence suggests that T-cell suicide is an important
mechanism whereby highly cytotoxic T cells are eliminated
within tumors. In a melanoma study, it was found that
melanoma tumor cells caused the apoptotic death of tumor-
specific T cells only upon specific MHC class I-restricted
recognition, suggesting cell death is initiated by recognition
of tumor antigens. This death was entirely blockable by the
addition of a neutralizing antibody against the Fas death
receptor (APO-1, CD95). Contrary to the view that tumor
cells cause the death of antitumor T cells by expressing Fas
ligand (FasL), data in this study suggested that FasL was
expressed by T lymphocytes upon activation, not on
melanoma.99 Another study showed that Fas or FasL-
deficient tumor-specific Th1 cells survive better in tumor-
bearing mice. Moreover, Fas- or FasL-deficient tumor-
specific Th1 cells were more effective than wild-type Th1
cells at eliminating tumors.100 These results imply that Fas-
mediated activation-induced cell death could be a limiting
factor in effective T cell-mediated immunosurveillance or
immunotherapy.
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Contraction of Effector T cells and Maintenance of
Memory T cells

The acute immune responses such as those induced by
cancer vaccines or acute infection can be divided into four
relatively distinct phases. The first, activation phase is
critically dependent on productive engagement between
naı̈ve T cells and mature DCs.37 The second phase,
expansion, usually lasts 5–8 days in mouse acute infectious
models, during which Ag-specific T-cell numbers increase
dramatically.37 Clonal expansion is also associated with
differentiation to effector T cells that migrate into various
tissues.37 Once pathogens are eliminated, the third phase,
contraction, follows suite and 90–95% of effector cells are
eliminated over the ensuing weeks.37 The final phase is the
generation and maintenance of the long-lived memory T-cell
pool.37 It is believed that contraction and homeostatic
maintenance of both memory CD4þ T cells and CD8þ T
cells are largely dependent on IL-15 in normal animals and
also on IL-7 in lymphopenic animals.101 The turn-over of
memory T cells is slow and it is believed that the main function
of IL-7 and IL-15 is to maintain the survival of memory T cells.
ACAD, not AICD, is antagonized by IL-15 and IL-7. Consistent
with this idea, bim�/� mice had a delayed contraction phase
after SEB challenge.34 In contrast, the death receptor path-
way is not required for diminishing T-cell number in the same
experimental setting. In addition, the HSV-specific CD8þ T
cells persisted in bim/ mice long after HSV clearance.35

Collectively, these studies suggested that the Bcl-2 pathway
is important for memory generation and maintenance by
cytokines. The remaining question is whether these bim/
‘memory’ T cells are true memory T cells or effector T cells
rescued through lack of apoptosis.

Another cytokine that regulates contraction of effector T cells
is IFNg, the hallmark cytokine made by Th1 cells and CD8þ T
cells. IFNg-deficient mice generated more similar numbers of
antigen-specific Th1 cells and CD8þ T cells during infection,
DC vaccination, autoimmune EAE, and tumor vaccination.102–104

However, there were significant delays of contraction of
IFNg-deficient T cells.102–104 The memory responses against
tumor vaccination were much more potent when IFNg
signaling was blocked.104 Two possible mechanisms were
proposed. IFNg can induce caspase expression in T cells.
Overexpression of caspase 8 in IFNg-deficient Th1 cells
recovered their sensitivity to AICD. However, since AICD is
not involved in contraction, the more likely explanation is that
caspase 3, which is also upregulated by IFNg, is able to
mediate the Bcl-2 pathway of death. The other mechanism is
that higher portions of IFNg-deficient CD8þ T cells expressed
high levels of IL-7r.105 These IL-7r-positive effector T cells
were shown to be the precursors of memory cells.106

Therapeutic Implications

Evidence accumulated over many years of studying tumor–
immune system interactions in animal models and in cancer
patients has singled out the adaptive immunity, in particular
tumor-specific T cells as an important mechanism of tumor
surveillance as well as tumor rejection. It is thus not surprising
that tumors have hijacked many normal mechanisms that

maintain health by eliminating effector T cells and maintaining
immune tolerance, and use them to achieve immune
evasion and uncontrolled growth. The importance of char-
acterizing specific mechanisms that different patients
or different tumors employ is related to the need to improve
the efficacy of tumor immunotherapy.107 In the case of cancer
vaccines, the goal is to boost already existing tumor-
specific T-cell responses or attempt to prime additional
responses. Clearly, the ability to do that is predicated on
several conditions: (1) antigen-presenting cells need to be
responsive to maturation and activation signals in order to
effectively cross-present antigens from the vaccine to T cells;
(2) tumor-antigen-specific memory T cells need to be capable
of expansion upon antigen recognition; (3) tumor-antigen-
specific effector T cells need to be able to migrate to tumor
sites and survive long enough to make beneficial cytokines or
kill tumor cells. Every one of these, if not all, is interfered by
the tumor or its products, as we discussed above. One way
of dealing with the competence of APCs has been to take,
expand them in vitro, properly mature and activate them,
load them with antigen and inject back into the patient.108

Even if this labor intensive, customized and personalized
approach to vaccination would become broadly feasible,
the problem of T-cell death in the tumor microenvironment will
remain. The success of inducing good effector T cells
at the vaccination site will be compromised by the effect
of various immunoinhibitory forces in the tumor micro-
environment, such as FasL, IDO, TGF-b, and others.
Adoptive transfer of large numbers of tumor-specific
effector T cells, recently generating some enthusiasm
due to evidence of therapeutic efficacy, is equally problematic
in the context of tumor-induced immunosuppression.
There is no experimental evidence to show that these cells
are less susceptible to the effects of various death signals
present in the tumor, than T cells elicited by vaccination.
The only advantage might be the much larger cell number that
can be transferred compared to the numbers that can be
elicited through vaccination, thus assuring some therapeutic
effect before all the cells disappear. The latest report shows
that adoptively transferred T cells persist in the patients long
term, however this does not correlate with the therapeutic
effect.109

One important factor that we have not discussed and for
which there is not sufficient information is the importance of
disease stage and immunosuppression. Most of the T-cell
killing mechanisms described above were initially found in late
stage tumors. By definition, however, even tumors designated
by pathologists to be early stage may be late stage when
considered by the immune system. Certainly, even early-
stage tumors have evaded immune control, suggesting that
they have acquired many immunosuppressive characteris-
tics. If experiments in the future show that T cells are much
more effective against early disease and that immuno-
suppressive factors are fewer, it would stand to reason that
both active and passive T-cell therapy for late-stage disease
should be strongly discouraged and efforts should be
expanded to move such therapies to early disease. If,
however, both early- and late-stage cancers have the same
immunosuppressive potential, efforts are best spent in
developing these therapies for the setting of premalignant

Tumor causes T-cell death
B Lu et al

77

Cell Death and Differentiation



lesions to stop their progression to full blown immunosup-
pressive tumors that kill T cells.19,110
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