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Abstract
The discovery of B-cell lymphoma-2 (BCL-2) over 20 years
ago revealed a new paradigm in cancer biology: the
development and persistence of cancer can be driven by
molecular roadblocks along the natural pathway to cell death.
The subsequent identification of an expansive family of BCL-2
proteins provoked an intensive investigation of the interplay
among these critical regulators of cell death. What emerged
was a compelling tale of guardians and executioners, each
participating in a molecular choreography that dictates cell
fate. Ten years into the BCL-2 era, structural details defined
how certain BCL-2 family proteins interact, and molecular
targeting of the BCL-2 family has since become a pharma-
cological quest. Although many facets of BCL-2 family death
signaling remain a mechanistic mystery, small molecules and
peptides that effectively target BCL-2 are eliminating the
roadblock to cell death, raising hopes for a medical break-
through in cancer and other diseases of deregulated apoptosis.
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Introduction

First identified at the chromosomal breakpoint of
t(14;18)(q32;q21) lymphomas, B-cell lymphoma-2 (BCL-2) is

the founding member of a family of proteins that regulate cell

death.1–3 Gene rearrangement places BCL-2 under the

transcriptional control of the immunoglobulin heavy chain

locus, resulting in high-level BCL-2 expression and pathologic

cell survival.4,5 The oncogenic activity of BCL-2 derives from

its ability to block cell death following a wide variety of

stimuli.6–8 Transgenic mice bearing a BCL-2-Ig minigene

initially displayed a polyclonal follicular lymphoproliferation

that selectively expanded a small resting IgM/IgD B-cell

population.4,9 These recirculating B cells accumulated be-

cause of an extended survival rather than increased prolifera-

tion. Despite a fourfold increase in resting B cell counts,

BCL-2-Ig mice were initially quite healthy. However, over time

these transgenics progressed from an indolent follicular

hyperplasia to a diffuse large cell, and often immunoblastic,

lymphoma.10 The long latency period and progression from

polyclonal hyperplasia to monoclonal high-grade malignancy

implicated secondary genetic abnormalities in BCL-2-driven

lymphomagenesis. Indeed, approximately half of the high-

grade tumors possessed a c-myc translocation involving

an immunoglobulin heavy-chain locus.10 These tumor cells

complemented an inherent survival advantage (bcl-2) with a

gene that promotes proliferation (c-myc). By preventing the

apoptotic demise of activated lymphocytes, BCL-2 enabled

the acquisition of additional genetic aberrations and the

emergence of monoclonal neoplasms. Doubly transgenic

mice engineered to overexpress both BCL-2 and c-myc

displayed synergistic tumorigenesis.11 When leukemic mice

with doubly deregulated BCL-2 and c-myc were conditionally

induced to cease BCL-2 expression, tumor regression was

observed, confirming a role for BCL-2 in tumor mainte-

nance.12 Thus, the discovery of BCL-2 established the new

paradigm in cancer biology that prolonging cell survival by

evasion of apoptosis can both initiate and sustain cancer.
The BCL-2 family has expanded significantly and now

includes both pro- and antiapoptotic proteins, which form a
complex network of checks and balances that regulate cell
fate.13,14 Disrupting the balance imposed by the BCL-2 family
can lead to a host of human conditions that are characterized
by excessive cellular demise, such as in neurodegenerative
disease15 or relentless cellular survival, such as in cancer16

(Figure 1). BCL-2 proteins are defined both by their structure17

and function (Figure 2). The survival proteins such as BCL-2
and BCL-XL share three to four conserved BCL-2 homology
(BH1-4) domains, and are thus termed ‘multidomain anti-
apoptotic’ members. The executioner proteins such as BAX
and BAK share three conserved domains (BH1-3) and are
known as ‘multidomain proapoptotic’ proteins. A subgroup of
proapoptotic proteins only displays conservation in the third
BH domain. These ‘BH3-only’ members function as death
sentinels that are situated throughout the cell, poised to
transmit signals of cellular injury through multidomain
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members. A variety of physiological death signals, as well as
pathological cellular insults, trigger the genetically pro-
grammed pathway of apoptosis13,18–40 (Figure 3). Depending
upon the nature of apoptotic stimuli and the cellular context, a
BH3-only protein’s death signal will either be neutralized by
antiapoptotic proteins or delivered, directly or indirectly, to the
mitochondrial executioners BAX and BAK. When activated,
these proapoptotic multidomain members induce permeabi-
lization of the outer mitochondrial membrane, enabling
released mitochondrial factors to activate caspases, which
irreversibly execute the death program.
The network of interactions among BCL-2 family members

is complex and remains a focus of intensive investigation.
Diverse cellular signaling pathways engage the apoptotic
program by launching particular BH3-only proteins41,42

(Figure 3). For example, activation of death receptors Fas
and tumor necrosis factor receptor 1 triggers caspase-8-
induced cleavage of BH3-only protein BID.43,44 The amino
terminus of truncated BID (tBID) becomesmyristolated, which
facilitates its mitochondrial targeting and subsequent trans-
mission of a plasma membrane death signal to multidomain
BCL-2 family members at the mitochondria.45 In the DNA-
damage response, nuclear p53 induces gene transcription of
BH3-only PUMA,46 which in turn displaces cytoplasmic p53
from BCL-XL, enabling direct protein interaction-based
activation of BAX by p53.47,48 Just as distinct signaling
pathways employ specific BH3-only proteins, BH3-only
proteins display sequence-dependent specificity for their
target multidomain antiapoptotic proteins.12,49 The ability of
antiapoptotic proteins to form heterodimers with multidomain

Normal Tissue Diseases of Disordered Cell Death

Neurodegeneration
Immunodeficiency
Infertility

New
Cells

Cell
Death

Homeostasis

New
Cells

Cell
Death

Cancer
Autoimmunity

New
Cells

Cell
Death

Figure 1 Apoptosis maintains tissue homeostasis by balancing cellular life and death. Deregulated apoptotic pathways disrupt the balance, resulting in diseases of
premature cell loss or unrelenting cell survival
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Figure 2 BCL-2 family proteins are structurally defined by their BCL-2 homology domains (BH domains) and functionally categorized by their ability to inhibit or activate
cell death. Human BCL-2 family proteins are drawn to scale based upon polypeptide length and aligned by their BH3 domains
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proapoptotic proteins suggests that neutralizing competition
plays an important role in their suppression of cell death.50–56

BH3-only proteins can promote apoptosis by antagonizing
antiapoptotic proteins, and thereby relieve antiapoptotic
inhibition of BAX/BAK. Such BH3-only proteins (e.g. BAD)
have been termed ‘sensitizers’57 or ‘derepressors’.58 Alter-
natively, select BH3-only proteins such as BID and BIM
may also trigger BAX/BAK directly,22,58–62 and are therefore
termed ‘activators’.57 In addition to these internal family-
based interactions, BCL-2 proteins associate with a host of

other cellular proteins31,47,63–71 and have emerging roles in
diverse physiologic pathways including glucose metabolism20

and the DNA-damage response.24,40

BCL-2 Family Form and Function

A pivotal milestone in the apoptosis field was achieved in 1996
when the first X-ray and nuclear magnetic resonance (NMR)
structure of a BCL-2 family protein was reported72 (Figure 4a).

Figure 3 Cytotoxic signals activate the apoptotic program through diverse pathways, recruiting distinct BH3-only members to engage downstream multidomain BCL-2
family proteins
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The architecture of BCL-XL consists of eight a-helices, two of
which form a central hydrophobic core reminiscent of the
membrane insertion domains of pore-forming Diphtheria toxin
and colicins.72 This structural analogy led to experimental
confirmation that BCL-2 family members can mediate pore
formation in liposomal and mitochondrial systems,73–76 an
activity that is dependent upon core helices 5 and 6.76–78

Another critical architectural feature of BCL-XL was identified

on its protein surface, a hydrophobic groove formed at the
apex by the confluence of BH1, 2, and 3 domains and at the
base by a-helices 3 and 4. The structure of a BAKBH3 peptide
in complex with BCL-XL revealed that the hydrophobic groove
was indeed the contact site for proapoptotic binding53

(Figure 4b). Thus, the protein interaction that accounts for
BCL-2 family member homo- and heteroassociations,50,54,56

and believed to regulate pore formation, was explicitly

Figure 4 The structures of antiapoptotic BCL-2 family members (a) and their BH3 peptide complexes (b) revealed a multidomain hydrophobic groove that serves as
the critical binding interface for a-helical BH3 domains. Hydrophobic residues are indicated in green and BH3-binding grooves bracketed in black. Despite their opposing
functions, pro- and antiapoptotic multidomain members share overall structural similarities, including two hydrophobic core a-helices surrounded by 6–7 amphipathic
a-helices, a flexible N-terminal loop, a surface hydrophobic groove, and a C-terminal transmembrane domain (a, c). BH3-only BID contains an extended amino terminus
that contains the cleavage site for caspase-8, which triggers BID activation upon death receptor engagement (c). BAX and BCL-w contain a structurally defined
C-terminal ninth helix (a9) that may regulate access to the BH3-binding groove (c, d). A comparison of BCL-w structures with and without BID BH3 peptide binding
demonstrates how a9 (red) overlies the binding pocket until displaced by the BH3 helix (blue), which targets the hydrophobic groove (d)
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defined. The subsequent NMR structures of BCL-2,79 a BAD
BH3 peptide/BCL-XL complex,80 BCL-w81–83 and MCL-184

highlighted the three-dimensional theme of an antiapoptotic
hydrophobic groove fashioned to engage the BH3 death helix
of proapoptotic members (Figure 4b). Discrete differences in
the amino-acid composition among antiapoptotic grooves and
BH3 ligands dictate the specificity of apoptotic-binding
partners.49,57,79,80,84 With an essential rule of engagement
structurally defined, the mechanics of BCL-2 family interac-
tions came into focus.
On the proapoptotic side, NMR structures of BH3-only

BID85,86 and multidomain proapoptotic BAX52 disclosed
striking architectural similarities between the proponents
and opponents of cell death (Figure 4c). BID and BAX
likewise possess two central core helices that are surrounded
by 6 or 7 amphipathic helices, respectively. The amino-
terminal portions of BID and BAX contain unstructured loops
(Figure 4c), as do select antiapoptotic proteins such as BCL-2
and BCL-XL. This loop region has distinctive lengths and
primary sequences among BID, BAX, and the antiapoptotics
BCL-2 and BCL-XL, and is believed to regulate their apoptotic
functions. For example, phosphorylation within the loop region
of BCL-2 differentially modulates its antiapoptotic activity
depending upon the cellular context,87,88 and caspase-
mediated cleavage at the loop can actually transform BCL-2
into a proapoptotic protein.64 Caspase-8-mediated cleavage
of BID within the unstructured loop results in exposure of the
BH3 helix of tBID,85,86 which is targeted to the mitochondria
for apoptosis induction.43 The amino terminus of BAX has
been implicated in BH3 ligand binding,59 intracellular localiza-
tion,89,90 and negative regulation.91,92 Calpain-mediated
cleavage of BAX just prior to its relatively short unstructured
loop generates a truncated form with enhanced apoptogenic
activity,93–95 which may reflect its functional conversion to a
BH3-only-type protein.96

Multidomain pro- and antiapoptotic proteins contain C-
terminal transmembrane domains that insert into the mito-
chondrial outer membrane. BH3-only BID lacks this C-
terminal domain and interacts with lipid membrane with its
helices parallel to the surface rather than by transmembrane
insertion.97,98 Whereas the constructs for the BCL-XL, BCL-2,
and MCL-1 structures lack the C-terminal transmembrane
region, proapoptotic BAX and antiapoptotic BCL-w have a
structurally defined ninth a-helix (a9) at the C-terminus52,82,83

(Figure 4c and d). These a9 helices fold back into the
hydrophobic groove in an orientation opposite to that
delineated for the interactions of BAK and BAD BH3 peptides
with BCL-XL. The C-terminal helix effectively blocks both
access to the groove and exposure of the BH3 domain and C-
terminal hydrophobic residues (Figure 4d). Indeed, binding of
BH3 peptides to the hydrophobic groove of BCL-w is impaired
by a-9, as reflected by decreased BH3 peptide affinity for
full-length versus C-terminally truncated BCL-w.82,83 The dis-
tinctive C-terminal structure likely accounts for the cytosolic
disposition of BAX and BCL-w by optimizing solubility until
triggered to undergo a conformational change, which releases
a9 for membrane insertion.52,82,83,99 By obstructing the
protein interaction site, a9 may also contribute to maintaining
BAX and BCL-w in the monomeric form. Of note, a9 of BCL-w
is less hydrophobic and more mobile than that of BAX by

NMR, suggesting that the activation criteria for BAX a9
disengagement and resultant BAX translocation are stringent
by design. Consistent with the need for tight structural control
over BAX activation, numerous proteins in addition to BCL-2
family antiapoptotics have been identified that bind and inhibit
BAX or BAK.63,64,66,67,69

The published structures of BCL-XL, BCL-2, BID, BAX,
BCL-w, MCL-1, and several of their complexes with BH3
peptides have provided tremendous insights into the func-
tional roles of BCL-2 family members and the protein
interactions that enable their apoptotic activities. The explicit
mechanics of how BCL-2 family members regulate mitochon-
drial pore formation, and how select BH3-only members may
engage proapoptotic multidomain proteins, remain active
areas of investigation. Structural studies that evaluate BCL-2
family activities and interactions in the lipid environment
continue to provide new details regarding the complexity of
BCL-2 family conformational changes that occur during
mitochondrial apoptosis induction.97,98,100–102 Most impor-
tantly, structural delineation of the helical folds responsible for
forming both a multidomain groove and its BH3 ligand
established a rational means for targeting apoptosis by
chemical design.

Getting into the Groove

The fields of chemical genetics and developmental therapeu-
tics share the mission of identifying small molecules that
directly and specifically alter protein function so that physio-
logic activities can be investigated and manipulated on a
conditional basis in real-time. The objective of generating
small molecules to selectively target apoptotic protein inter-
actions and specifically manipulate their corresponding
pathways in vivo has been challenging due to the size and
complexity of the intracellular protein-binding interface.
However, virtual and small molecule screens, in addition to
peptidomimetic, secondary structure reinforcement, and
NMR-based strategies, have yielded a diverse group of
compounds that target the BCL-2 family hydrophobic groove
(Figures 5 and 6, Table 1). The development of these
compounds as biological tools and clinical candidates
promises to deepen our understanding of BCL-2 family
biology and deliver a new era of treatments to patients
suffering from oncologic, neurodegenerative, autoimmune,
and a host of other diseases characterized by an imbalance
between cell survival and death.

The Hunt for Small Molecules

One of the earlier strategies that successfully identified BCL-2
inhibitors involved computer-based screening of small mole-
cule databases for structures that matched likely binding sites
on the surface of BCL-2. This approach yielded HA14–1
(IC50¼ 9 mM for competing BAK BH3/BCL-2 interaction),103

several micromolar affinity hits from the National Cancer
Institute 3D database including Compound 6,104 and YC137
(IC50¼ 1.3mM for competing BID BH3/BCL-2 interaction)105

(Figure 5a–c). Antimycin A3 emerged as a BCL-2 groove
binder (Kd¼ 0.82mM) upon screening mitochondrial respira-
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tion inhibitors for proapoptotic activity in hepatocyte cell
lines with graded expression of BCL-XL

106,107 (Figure 5d). A
BAK BH3/BCL-XL competitive binding assay-based screen
identified two small molecule inhibitors, BH3I-1 and BH3I-2,

with Kis in the 2–16mM range108 (Figure 5e–f). Similar binding
assay strategies were used to screen natural product libraries,
identifying chelerythrine (IC50¼ 1.5 mM, BAK BH3/BCL-XL

competition),109 gossypol (IC50¼ 0.5mM, BAD BH3/BCL-XL
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competition),110,111 and purpurogallin (IC50¼ 2.2mM, BAD
BH3/BCL-XL competition)110 as BCL-XL groove binders
(Figure 5g–j). Natural polyphenols found in extracts of green
tea (e.g. epigallocatechingallate) and black tea (e.g. thea-
flavanin) compete with BAD BH3 for BCL-XL and BCL-2

binding with Kis in the 120–1230 nanomolar range112 (Figure
5k and l). A polypyrrole derivative identified from a natural
compound library screen was developed to yield GX15-070,
which binds to BCL-XL, BCL-w, and MCL-1 in the 500 nM
range113,114 (Figure 5m).

Figure 6 Strategies to reinforce BH3 peptide a-helicity or chemically simulate key projections of the BH3 helix on a synthetic scaffold have generated peptidic and
peptidomimetic compounds for BCL-2 family targeting

Table 1 Compounds in development for targeting the BCL-2 family in vivo

Compound Class Mechanism Academic institution/
company

Developmental
stage

Genasense Antisense
oligonucleotide

Antiapoptotic mRNA
downregulation (BCL-2)

Genta Clinical

HA14-1 analogs Small molecule Antiapoptotic inhibition Raylight Chemokine
Pharmaceuticals

Preclinical

Compound 6 Small molecule Antiapoptotic inhibition University of Michigan Preclinical
Antimycin A3 Small molecule Antiapoptotic inhibition University of Washington Preclinical
BH3Is Small molecule Antiapoptotic inhibition Harvard University Preclinical
AT101: (–) Gossypol Small molecule Antiapoptotic inhibition Ascenta Therapeutics Clinical
Apogossypol Small molecule Antiapoptotic inhibition The Burnham Institute Preclinical
Theaflavanin Small molecule Antiapoptotic inhibition The Burnham Institute Preclinical
Polyphenol E Small molecule Antiapoptotic inhibition Mayo Clinic Preclinical
GX15-070 Small molecule Antiapoptotic inhibition Gemin X Clinical
ABT-737 Small molecule Antiapoptotic inhibition Abbott Laboratories/Pfizer

(Idun)
Preclinical

IFI-983L, IFI-194 Small molecule Antiapoptotic inhibition Infinity Pharmaceuticals/
Novartis

Preclinical

CPM-1285 analogs Lipidated peptide Antiapoptotic inhibition Raylight Chemokine
Pharmaceuticals

Preclinical

Terphenyl derivative Peptidomimetic Antiapoptotic inhibition Yale University Preclinical
SAHBs Stapled peptide Antiapoptotic inhibition Dana-Farber Cancer

Institute/Harvard University
Preclinical

4-Phenylsulfanyl-phenylamine
derivatives

Small molecule Proapoptotic inhibition (BID) The Burnham Institute Preclinical

3,6-Dibromocarbazole piperazine
derivatives of 2-propanol

Small molecule Proapoptotic inhibition (BAX) Serono Preclinical

Humanin peptides Peptide Proapoptotic inhibition (BAX) The Burnham Institute Preclinical
Ku70 peptides Peptide Proapoptotic inhibition (BAX) The Blood Center of South

Eastern Wisconsin
Preclinical
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A major hurdle of small molecule library screening
approaches, whether virtual or biochemical, is the chemical
optimization required to achieve high-potency target-binding
activity from hits that are typically in the micromolar range. An
alternative strategy developed by Fesik and co-workers115

circumvents this shortcoming of library screening by chemi-
cally linking ligands that bind to adjacent sites within a target
interface, effectively converting relatively low affinity inter-
actors into conjoined high-affinity compounds. The method is
called structure–activity relationships (SAR) by NMR, reflect-
ing that compound optimization is derived from SAR
determined by NMR. One of the seminal fruits of this strategy
is ABT-737, a small molecule that binds to BCL-2, BCL-XL,
and BCL-w at subnanomolar affinity and demonstrates potent
antitumor activity in vitro and in vivo116 (Figure 5n). The SAR
by NMR approach has recently been combined with parallel
synthesis to generate optimized BCL-XL inhibitors117,118

(Figure 5o and p).

Rebuilding the BH3 Helix

The nanomolar-binding affinities and native selectivities of
BH3 peptides for their antiapoptotic targets prompted the
development of derivatized peptides for BCL-2 family target-
ing. In order to overcome cell impermeability, cell penetrating
peptides were synthesized by tagging the BH3 domain with
moieties that facilitate uptake, including Antennapedia119–121

and poly-D-arginine57 amino-acid sequences, and fatty acids
such as decanoic acid.122 Despite their cell permeability,
several drawbacks of these derivatized peptides include
loss of a-helical structure, protease sensitivity, low cellular
potency, and in certain circumstances apoptosis induction
independent of BCL-2 targeting.119

Short peptides taken out of context from a protein typically
lack native three-dimensional structure, and therefore, may
fail to exhibit biologic functionality at physiologic doses. As the
a-helix participates in a wide variety of intermolecular
biological recognition events, a major focus of modern organic
chemistry is the development of synthetic strategies to mimic
or stabilize the architecture of biologically active structures
for both basic research and medicinal purposes (Figure 6).
Schepartz and co-workers123,124 developed a protein grafting
strategy in which bioactive a-helical residues, such as BAK
BH3 peptide, are inserted into a stable protein scaffold, and
then subjected to rounds of phage display to evolve high-
affinity ligands with preferences for BCL-2 or BCL-XL

(Figure 6a). In lieu of the natural amide backbone of a-helical
peptides, synthetic scaffolds have been developed that
effectively present critical amino acid residues to the
antiapoptotic groove. For example, constructing compounds
using terphenyl,125,126 terpyridine,127 or terephthalamide128

scaffolds that project essential BH3 motifs yielded groove
binders with micromolar and nanomolar Kds (Figure 6b).
Gellman and co-workers129 developed BAK BH3 ‘foldamers’
that are peptidic compounds built from oligomers with defined
folding propensities. Chimeric peptides that juxtapose native
BAKBH3 sequence with alternating a- and b-peptide foldamer
sequence can also present critical groove-binding motifs,
resulting in compounds with nanomolar-binding affinities for
BCL-XL(Figure 6c).

An important strategic breakthrough in stabilizing natural
a-helices derived from installing a covalent bond between
amino acids in an attempt to ‘lock’ the peptide structure into
place.130–134 The incorporation of lactam bridges into the BAK
BH3 peptide increased a-helical content from 14% to as high
as 78%135 (Figure 6d). However, stabilization methods that
incorporate polar or labile crosslinks may not address peptide
shortcomings of instability and cell impermeability in vivo.
Grubbs and co-workers133 generated a covalent crosslink
betweenO-allyl serine residues on adjacent turns of an a-helix
using ruthenium-catalyzed ring closing metathesis (RCM),
which employs a metal catalyst to form a covalent bond
between non-natural amino acid residues containing terminal
double bonds or ‘olefins’. This novel chemical approach was
successful in generating a covalent hydrocarbon crosslink,
but little to no enhancement of peptide a-helicity was
observed. Subsequently, Verdine and co-workers134 devel-
oped an alternate ‘olefin metathesis’-based approach, which
employed a,a-disubstituted non-natural amino acids contain-
ing alkyl tethers (Figure 6e). By experimenting with alternative
placement of these non-natural amino acids along the a-helix,
in addition to varying stereochemistry and alkyl tether length,
the chemical features required to dramatically stabilize a
model helical peptide using an all-hydrocarbon chain crosslink
were defined.
Stabilizing the helical form of biologically active peptides is

expected to favor target binding by facilitating structural
preorganization.136 Furthermore, helix formation buries the
polar amide backbone, which should increase resistance to
proteolytic cleavage and decrease the barrier to cell penetra-
tion. In our first biological application of this chemical
approach, we developed and tested Stabilized Alpha-Helices
of Bcl-2 domains, or ‘SaHBs’, modeled after BID BH3.137 An
all-hydrocarbon staple inserted into the BID BH3 peptide
sequence successfully (1) restored and stabilized a-helical
structure, (2) enhanced peptide half-life, (3) improved binding
potency, and (4) conferred cellular permeability such that the
genetic pathway of apoptosis could be reactivated in cancer
cells in vitro and in vivo. Thus, synthetic approaches such
as ‘hydrocarbon stapling’ that reinforce native peptide
sequences offer an alternative strategy for studying and
manipulating protein interactions, and provide prototypes for
novel therapeutics designed to target aberrant signaling
pathways in human disease. The appeal of this strategy
includes retaining the complexity, potency, and specificity of
natural bioactive peptide sequences, the short timeframe for
compound development, and the potential for broad applic-
ability in targeting cell surface, intracellular, and organelle-
based protein interactions.

Neutralizing the Proapoptotics

Small molecules that target apoptotic protein interfaces other
than the multidomain antiapoptotic groove have also been
identified. Using the strategy named SAR by interligand
nuclear Overhauser effect (ILOEs), of Reed and co-work-
ers138 designed a panel of 4-phenylsulfanyl-phenylamine
compounds that bind a deep groove on the surface of BID with
micromolar affinity. The molecules inhibited tBID-induced
mitochondrial SMAC release, caspase-3 activation, and cell
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death in the 20–100 mM range. 3,6-Dibromocarbazole piper-
azine derivatives of 2-propanol were developed as the first
small molecule modulators of BAX-inducedmitochondrial and
liposomal release activity.139 Subsequently, a small molecule
screen using a BAX-induced liposomal release assay
identified two additional BAX channel blockers.140 The Bax
channel inhibitors Bci1 and Bci2 prevented cytochrome c
release from mitochondria and protected cells from apoptosis
in vitro at micromolar dosing. Bcis were neuroprotective in an
in vivo model of transient brain ischemia. Peptides derived
from humanin63 and Ku70141 proteins also interact with BAX
and inhibit its activation. Thus, in addition to targeting the
antiapoptotic groove to stimulate cell death, small molecule
and peptide-based approaches to inhibiting proapoptotic
proteins may lead to the development of cytoprotective
therapeutics.

Toward a Therapeutic Reality

From a 20-year multidisciplinary dissection of BCL-2 family
interactions and pathways has emerged the promise of novel
therapeutics to treat human disease. More than a dozen small
molecules and peptidic compounds are currently in preclinical
and clinical development for targeting the structurally defined
multidomain antiapoptotic groove113,142 (Table 1). Preclinical
development of small molecule and peptide inhibitors of
proapoptotic BCL-2 family proteins is also underway. A BCL-2
antisense therapeutic,143–146 Genasense, is in Phase III
clinical testing. For the clinicians and scientists who dis-
covered BCL-2 and for those who have subsequently
dedicated their lives’ work to elucidating and targeting the
BCL-2 family of proteins, successful translation of these
efforts into the clinic in the form of FDA-approved medicines
will be a crowning achievement.
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