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Abstract
The activation of NF-jB inhibits apoptosis via a mechanism
involving upregulation of various antiapoptotic genes, such
as cellular FLICE-inhibitory protein (c-FLIP), Bcl-xL, A1/Bfl-1,
and X chromosome-liked inhibitor of apoptosis (XIAP). In
contrast, the activation of c-Jun N-terminal kinase (JNK)
promotes apoptosis in a manner that is dependent on the cell
type and the context of the stimulus. Recent studies have
indicated that one of the antiapoptotic functions of NF-jB is
to downregulate JNK activation. Further studies have also
revealed that NF-jB inhibits JNK activation by suppressing
accumulation of reactive oxygen species (ROS). In this
review, we will focus on the signaling crosstalk between the
NF-jB and JNK cascades via ROS.
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Introduction

NF-kB is a collective term used to describe members of the
Rel family of dimeric transcription factors.1,2 The Rel family
regulates transcription of a large number of genes that control
cell survival and differentiation including various proinflam-
matory cytokines, chemokines, and adhesion molecules.
Many of these same proinflammatory molecules, including
cytokines such as tumor necrosis factor (TNF)a and inter-
leukin-1 (IL-1), are able to activate NF-kB, initiating a signaling
cascade of activation. NF-kB can also be activated by Toll-like
receptors that recognize pathogen-associated molecules or
by cellular stress induced following UV or g-irradiation. The
recent identification of molecules, which regulate the activa-
tion of the NF-kB heterodimer, RelA(p65) and p50 has
enhanced our understanding of the molecular mechanisms
controlling inflammation (Figure 1). Signaling systems in-
duced by a variety of stimuli activate two serine kinases,
termed IkB kinase (IKK)a and IKKb (or IKK1; IKK2), which
target the inhibitors of kB (IkB). The subsequent phosphory-
lation by these kinases leads to eventual ubiquitination and
proteasome-dependent degradation of IkB, releasing the
latent dimeric transcription factor to the nucleus. A key
mechanism by which NF-kB controls cell survival3–5 is to
enhance transcription of various antiapoptotic genes, includ-
ing cellular FLICE-inhibitory protein (c-FLIP), Bcl-xL, A1 (also
known as Bfl-1), and XIAP (X chromosome-liked inhibitor of
apoptosis).6,7

Regulation of cell death and survival is also controlled
in part by another signaling cascade activated by the mitogen-
activated protein kinase (MAPK), which is induced following
cellular stress or cytokine signaling.8,9 In mammals, the
MAPK cascades are composed of three distinct signaling
modules, the c-Jun N-terminal kinase (JNK) cascade, the
p38MAPK cascade, and the extracellular signal-regulated
kinase (ERK) cascade. Each MAPK is activated by sequential
protein phosphorylation through aMAPKmodule; for example
MAPK kinase kinase (MAPKKK) phosphorylates MAPK
kinase (MAPKK), which in turn phosphorylates MAPK
(Figure 2). In the case of the JNK cascade, the MAPKKKs
include apoptosis-signal regulating kinase (ASK)1, MAP/ERK
kinase kinase (MEKK)s, MTK1 (also known as MEKK4), and
TGFb-activated kinase (TAK)1. These MAPKKKs activate
MKK4 and/or MKK7, which then in turn activate JNK, the
targets of which include the AP1-related transcription factors,
such as c-Jun.8,9 Cytokines and growth factors including
TNFa and IL-1 induce rapid (within 10min) yet transient
activation of MAPK, whereas cellular stresses, such as UV or
g-irradiation, induce prolongedMAPK activation. Several lines
of evidence suggest that transient MAPK activation is
associated with gene expression, proliferation, and differen-
tiation, whereas prolonged MAPK activation promotes cell
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death, by a mechanism that does not solely involve gene
activation, and is cell type- and stimuli-dependent10,11

Pro- and Antiapoptotic Roles of JNK

Although the activation mechanisms of JNK have been
extensively investigated, the biological consequence of JNK
activation in cell death is still controversial.7,8,12,13 The most
convincing evidence that JNK signaling promotes apoptosis
comes from the experiments using mice deficient in the JNK
activation cascade. In JNK1 and JNK2 double knockout mice,
neuronal apoptosis is suppressed in the hindbrain, but
increased in the forebrain, indicating that both JNK1 and
JNK2 regulate region-specific apoptosis during early brain
development.14 Moreover, murine embryonic fibroblasts
(MEFs) from JNK1 and JNK2 double knockout mice are
resistant to apoptosis induced by genotoxic stress including

exposure to anisomycin, methylmethanesulfonate, and UV,15

although a recent study has challenged this conclusion.16

Consistent with these results, primary neurons from both
neuron-specific JNK3 isoform knockout mice, and knockin
mice expressing the nonphosphorylated form of c-Jun
(c-JunAA), are resistant to excitotoxic glutamate-receptor
agonist, kainate-induced apoptosis.17,18 Moreover, MEFs
from ASK1 knockout mice exhibit decreased sensitivity to
TNFa- and H2O2-induced apoptosis.19

Several lines of evidence demonstrate that the proapoptotic
JNK cascade ultimately induces apoptosis via the mitochon-
dria-dependent pathway. JNK phosphorylates members of
the Bcl-2 family of proteins, such as Bcl-2 and Bcl-xL, and
inactivates their antiapoptotic function.20–24 Moreover, the
ectopic expression of constitutively active JNK (using the
MKK7-JNK1 fusion protein) efficiently induces apoptosis in
wild-type cells, but not cells lacking the proapoptotic Bcl-2
family members, Bax and Bak, which are essential for the
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Figure 1 The classical and nonclassical NF-kB activation pathways. The classical NF-kB pathway is activated by inflammatory cytokines including TNFa and IL-1.
Activation of the classical pathway depends on TRAFs, MAPKKKs including TAK1 and MEKK3, and the IKK complex containing IKKb and IKKg subunits. Activation of
the IKK complex results in degradation of the inhibitor protein, IkBa and subsequent nuclear translocation of RelA/p50 dimers. The classical pathway mediates
coordinate expression of inflammatory cytokines and adhesion molecules. The nonclassical pathway induces nuclear translocation of RelB/p52 dimers, is strictly
dependent on IKKa homodimers and is activated by members of the TNF receptor family, such as lymphotoxin-b receptor (LT-bR) and CD40 via NF-kB-inducing kinase
(NIK). NIK is also involved in activation of the classical pathway by CD27 and CD40, but not TNFR. The nonclassical pathway plays a central role in the expression of
genes involved in development and maintenance of secondary lymphoid organs. The roles of TRAFs in activation of the nonclassical pathway remain unclear
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mitochondria-dependent apoptotic pathway.25 Furthermore,
JNK activates proapoptotic members of the Bcl-2 family, Bim
and Bmf, resulting in activation of Bax and Bak.26 Recently,
Deng et al.27 revealed an unexpected role of JNK in the
induction of the caspase 8-independent cleavage of Bid.
Under conditions in which TNFa-induced NF-kB activation is
blocked, JNK induces caspase 8-independent cleavage of Bid
at a different site, resulting in the production of jBid and not the
previously described tBid. jBid translocates to the mitochon-
dria leading to the preferential release of Smac (also known as
DIABLO). Smac then disrupts a complex consisting of the

TNF receptor-associated factor (TRAF)2 and the cellular
inhibitors of apoptosis (c-IAPs) complex, resulting in caspase
8 activation and ultimately the induction of apoptosis. Finally,
Tsuruta et al.28 have recently reported that JNK phosphory-
lates the 14-3-3 protein, a cytoplasmic anchor of Bax, and
that phosphorylated 14-3-3 fails to sequestrate Bax into
the cytoplasm, therefore inhibiting its translocation to the
mitochondria.
In contrast to the proapoptotic function of JNK as described

above, numerous studies demonstrate an antiapoptotic
role for JNK. Nishina et al.29,30 have illustrated that MKK4
knockout mice die due to massive hepatocyte apoptosis, and
that MKK4-deficient T cells exhibit increased sensitivity to
anti-Fas and anti-CD3-induced apoptosis, indicating that the
JNK pathway mediates survival signals. Furthermore, differ-
entiated embryonic stem (ES) cells lacking MEKK1 showed
reduced oxidative stress-induced JNK activation and were
more susceptible to apoptosis.31 Moreover, Lamb et al.32

have reported that JNK1 and JNK2 double knockout MEFs
show increased sensitivity to TNFa-induced cell death, and
that this increased sensitivity is due to defective JNK-
mediated upregulation of c-IAP2. Finally, Yu et al.33 reported
that JNK phosphorylates the Bcl-2 family protein, BAD and
inactivates its proapoptotic function. Collectively, these data
suggest that under certain experimental conditions JNK can
protect cells from apoptosis.
To explain the apparently controversial findings described

above, factor(s) other than JNK activation should be taken into
account, such as the activation of other signaling cascades
branching from the JNK pathway, including NF-kB. Indeed,
many stimuli such as TNF-related cytokines, simultaneously
activate both JNK and NF-kB pathways, but do not usually
induce apoptosis in normal cells. In contrast, genotoxic stress
preferentially activates the JNK pathway with marginal
activation of NF-kB, and thus apoptosis predominates.
Although genotoxic stress induces translocation of NF-kB,
the NF-kB complex containing RelA/p50 heterodimer turns
out to be transcriptionally inactive.34 Thus, it is reasonable to
speculate that molecules that are regulated by NF-kB, could
critically affect cell fate induced by the JNK cascade.

NF-jB Downregulates JNK

In the past, the contributions of the NF-kB and JNK pathways
to cell death have been discussed independently. However,
two recent studies have revealed signaling crosstalk between
the NF-kB and JNK pathways. Tang et al.35 and De Smaele
et al.36 have independently demonstrated that TNFa induces
prolonged JNK activation in NF-kB activation-deficient cells,
such as RelA and IKKb knockouts, and cells stably expressing
degradation-resistant IkBa. Consistent with previous stu-
dies,10,11 this prolonged JNK activation was found to
promotes apoptosis, suggesting that gene(s) are induced by
TNFa in an NF-kB-dependent fashion normally block JNK
activation. Two target genes that they identified which block
JNK activation were growth arrest and DNA damage-inducing
protein (GADD45)b and XIAP. Given that GADD45b was
known to interact with and activate MTK1/MEKK4, (which
triggers the p38 and JNK pathways),37 its inhibitory effect on
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by Relish mediate the degradation of DTAK1, limiting the duration of JNK
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JNK activation was unexpected. The other molecule identi-
fied, XIAP, had previously been shown to inhibit apoptosis by
inhibiting activation of caspases by direct binding,38 thus, in
this study Tang et al.35 reveal a novel antiapoptotic function of
XIAP. Furthermore, Papa et al.39 showed that GADD45b
binds to and inhibits the JNK activator, MKK7 through the
competitive inhibition of ATP. However, this inhibitory action
of GADD45b is cell-type specific, since TNFa-induced JNK
activation is not prolonged in GADD45b knockout MEFs or
splenocytes.40 Collectively, these studies demonstrate a cell-
type specific molecular link between NF-kB and JNK.
In Drosophila, there are several counterparts of signaling

components in the mammalian NF-kB and MAPK path-
ways,41 such as DJNK, a homologue of JNK; IMD, a
homologue of RIP; TAK1, a MAPKKK that activates JNK;
and the NF-kB homologue, Relish (Figure 3). The biological
consequences of the JNK pathway (DJNK) in Drosophila are
less complicated than in mammals, functioning to preferen-
tially promote apoptosis. Park et al.42 demonstrated that JNK
activation is prolonged in S2 cells lacking Relish. Moreover,
they showed that Relish activation leads to degradation of
TAK1, resulting in termination of JNK signaling. These results
indicate that the regulatory crosstalk between the JNK and
NF-kB pathways is also conserved in Drosophila. Interest-
ingly, two recent papers have demonstrated that the
phosphorylated form of c-Jun is recognized by a specific
ubiquitin ligase and is then subsequently degraded by the
ubiquitin-proteasome pathway.43,44 This indicates that apop-
totic c-Jun-dependent transcription is negatively regulated by

the ubiquitin-proteasome pathway. Although it is currently
unknown whether this proteasome-dependent c-Jun degra-
dation pathway is regulated by NF-kB, this system is
reminiscent of degradation of TAK1 by Relish in the
Drosophila IMD pathway.

Reactive Oxygen Species – Emerging
Mediators of Prolonged JNK Activation

The two studies described above have convincingly demon-
strated that NF-kB downregulates JNK activation and have
identified candidate molecules that inhibit JNK activation.
Nevertheless, the molecular mechanisms underlying the
NF-kB-dependent inhibition have still been controversial.
Reactive oxygen species (ROS) have emerged as bridging
molecules mediating the crosstalk between NF-kB and
JNK.45–47 ROS, including superoxide anions, hydrogen
peroxide and hydroxyl radicals, are accidentally generated
in the mitochondria during the transport of electrons from
the reducing equivalent (NADH-FADH2) tomolecular oxygens
through a mitochondrial respiratory chain of enzymatic
complexes (I–IV) (Figure 4a).48,49 Under normal physiological
conditions, ROS are rapidly eliminated by antioxidant en-
zymes, including superoxide dismutases (SODs), catalase,
glutathione peroxidase (GPx), and peroxiredoxin (PRx)
(Figure 4b).48,49 Dysregulation of electron transport through
the mitochondrial respiratory chain or an impairment in the
function of antioxidant enzymes results in the accumulation of
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ROS. In addition to the byproducts of ROS which accumulate
in the mitochondria as described above, NADPH oxidase
(NOX) enzymes, which are localized in the plasmamembrane
have also been identified as producers of ROS in various
types of cells in response to growth factors, cytokines, or
calcium signals.50 Moreover, several enzymes localized in the
peroxisomes, cytoplasm, and endoplasmic reticulum may
also generate ROS.48,49,51 Whether ROS play a central role
in cytokine-induced MAPK activation under physiological
conditions, however, remains controversial.
Previous studies have shown that ROS directly activate

various kinases, including ASK1, MEKK1, c-src, EGFR, and
PDGFR, which in turn activate the MAPK cascades.52

Consistent with a previous study,19 we and others45,53–55

have demonstrated that NF-kB downregulates JNK activation
by suppressing TNFa-induced ROS accumulation. Notably,
TNFa induces early and transient JNK activation in wild-type
cells, whereas TNFa induces ROS accumulation leading to
prolonged JNK activation in NF-kB activation-deficient cells.
In accordance with these findings, prolonged JNK activation
is inhibited by pretreatment of cells with antioxidants such
as butylated hydroxylanisole (BHA) and N-acetyl cysteine
(NAC), suggesting that the mechanisms of early/transient and
prolonged JNK activation are qualitatively different. Moreover,
extended JNK activation is still induced in TRAF2/TRAF5
double KO cells,45 in which TNFa-induced early/transient JNK
activation is severely impaired.56 Collectively, these results
demonstrate that early/transient JNK activation is dependent
upon TRAF, whereas prolonged JNK activation is ROS-
dependent.
Another important issue is how ROS induce long-lasting

JNK activation. A previous study57 has shown that ASK1
responds to ROS and triggers the JNK and p38MAPK, but not
ERK cascades. Given that TNFa and arsenic induce both
prolonged JNK and ERK activation in RelA KO and IKKb KO
MEFs,45,58 a kinase that activates the ERK cascade, such as
MEKK1 may also be involved in this prolonged MAPK
activation. In addition, as ROS directly activate JNK, we need
to consider the possibility that ROS may inactivate inhibitors,
which normally suppress JNK activation, therefore resulting in
prolonged JNK activation. In this respect, Kamata et al.55

reported that ROS inactivate MAP kinase phosphatases
(MKPs)59 by oxidizing cysteine residues critical for their
phosphatase activities. Moreover, oxidized MKPs are rapidly
degraded by the ubiquitin-proteasome pathway. Collectively,
these data suggest that ROS may utilize two different
mechanisms in order to promote persistent JNK activation.
ROS may either positively activate MAPKKKs, resulting in
JNK activation, and/or inactivate MKPs that would otherwise
dephosphorylate and inactivate JNK.
In addition to ROS, we do not formally exclude the

possibility that activation of the caspase cascades also
contributes to JNK activation. In this respect, several kinases,
including MEKK1,60 MST,61 and PAK2,62 have been reported
to be cleaved by caspases, resulting in their activation. Under
the conditions in which NF-kB activation is impaired, TNFa
stimulation induces both caspase-dependent apoptosis and
ROS-dependent necrosis. Therefore, activation of the cas-
pase cascades may contribute to JNK activation in a stimuli-
dependent fashion.

The Molecular Mechanisms of
TNFa-Induced ROS Accumulation

Regarding the mechanism whereby TNFa induces ROS
accumulation in NF-kB activation-deficient, but not wild-type
cells, two possibilities need to be considered. Firstly, impaired
induction of antioxidant enzymes or antioxidants that are
induced by NF-kB under normal conditions might be respon-
sible for ROS accumulation. Indeed, previous studies63,64

have shown that various antioxidant enzyme genes including
manganese-dependent SOD (MnSOD), metallothionein,
glutathione S-transferase, and ferritin heavy chain (fhc), are
induced by TNFa in an NF-kB-dependent fashion. Pham
et al.54 and Kamata et al.55 have also shown that the ectopic
expression of fhc and MnSOD inhibits TNFa-induced ROS
accumulation in RelA KO and IKKb KO cells, respectively.
However, given that complicated and multiple step reactions
might be required for efficient elimination of ROS (Figure 5b), it
is rather surprising that expression of a single gene, such as
fhc or MnSOD is sufficient for ROS elimination. In fact, the
inhibitory effect of MnSOD on TNFa-induced ROS accumula-
tion is not complete,55 indicating that another molecule or
mechanism might also be involved in this process.
Another possibility is that latent signaling cascade(s) that are

normally suppressed by NF-kB, may dominate over its
inhibition and therefore induce ROS. Chen et al.58 have
reported that TNFa promotes expression of a member of the
p450 family, cyp1b1 that generates ROS in IKKb KO cells.
Moreover, several studies have shown that ROS accumulation
is induced during apoptotic processes. A recent study65

indicated that activated caspase 3 cleaves the p75 subunit of
complex I of the mitochondrial electron transport chain,
resulting in ROS accumulation. Similarly, Giorgio et al.66 have
shown that proapoptotic signals induce release of p66Shc from
a putative inhibitory complex, which in turn oxidizes reduced
cytochrome c, thereby generating ROS. On the other hand,
Ventura et al.53 have reported that TNFa-induced ROS
accumulation is abolished in cells lacking JNK1 and JNK2,
indicating that a central role for JNK in ROS accumulation.
Given that ROS promote JNK activation, they hypothesized
that activation of the JNK pathway induces ROS accumulation,
which can in turn activate JNK in a positive feedback fashion.
However, it remains unclear how JNK induces ROS accumula-
tion. It is reasonable to surmise that themolecular mechanisms
underlying TNFa-induced ROS accumulation are not due to a
single mechanism, but are more likely to be cell-type specific.
To determine the subcellular localization of ROS generation,
such as the mitochondria, cytoplasm, or plasma membrane
might provide valuable information needed to elucidate the
mechanisms by which TNFa induces ROS. Given that there is
currently no reliable way to determine the subcellular location
of ROS generation using oxidation-sensitive dyes, it is crucial
to develop such detection systems to better understand the
signaling specificity induced by various oxidative stresses as
well as the mechanism whereby TNFa induces ROS.

Do ROS Induce Apoptosis or Necrosis?

Under various pathological conditions such as ischemia,
excessive amounts of accumulated ROS induce apoptosis or
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necrosis by activating the MAPK, caspase cascades, and /or
by disrupting mitochondrial membrane potential.67 This
contribution of ROS to apoptosis and necrosis is highly cell-
type specific, and also depends on the amount of endo-
genously or exogenously generated ROS present. As ROS
induce activation of the JNK cascade, apoptosis induced by
ROS is likely to be dependent on the JNK-mediated
mitochondria-dependent apoptotic pathway. Alternatively,
ROS may act directly on the mitochondria, inducing the
mitochondrial membrane permeability transition (mPT) and
resulting in the release of apoptogenic factors, such as
cytochrome c, apoptosis-inducing factor (AIF), and/or Smac/
DIABLO.68,69

The mechanisms underlying ROS-induced necrosis have
been highly debated. It is well known that TNFa induces ROS-

dependent necrosis in murine fibrosarcoma, L929 cells.70

Geldanamycin treatment induces the degradation of heat
shock protein (HSP)90 and its client protein, RIP, causing a
shift from necrosis to apoptosis in L929 cells, indicating an
essential role for RIP in TNFa-induced necrosis.71 Similarly,
Holler et al.72 have also reported that a critical role for RIP
in Fas-, TNFa-, and TRAIL-induced necrotic cell death. The
contribution of ROS to receptor-mediated necrosis was not
investigated in these studies; however, and the conclusion
reached was that FADD and kinase activity of RIP, but not
caspase 8, are essential for necrosis. Intriguingly, a recent
report73 has highlighted that both cell death followed by
ischemic brain injury and RIP-dependent necrotic cell death
are tightly linked with autophagy. However, further studies will
be required to address the role of autophagy in necrotic cell
death.
Two recent studies74,75 have shown that H2O2-induced

necrosis, but not genotoxic stress-induced apoptosis is
reduced in cells lacking cyclophilin D. As mPT induced by
H2O2 is also severely impaired in cyclophilin D knockout cells,
it appears that mPT is crucial for H2O2-induced necrosis.
Therefore, one of the mechanisms of ROS-induced necrosis
may be the opening of an mPT pore, resulting in the loss of
membrane potential and causing extensive swelling of the
mitochondria. However, it is currently unknown whether all
RIP- and ROS-dependent pathways leading to necrotic cell
death finally converge on mPT. To investigate this matter
further, it would be interesting to test whether knockdown of
cyclophilin D suppresses TNFa-induced ROS-dependent
necrosis in L929 cells or NF-kB activation-deficient cells.
Finally, we need to further our understanding of factor(s)

that may affect the fate of cells exposed to ROS. Protein
synthesis inhibitors, such as cycloheximide (CHX) and
emetine, which are usually required for TNFa to induce cell
death in wild-type cells, might affect the fate of the TNFa-
stimulated cells and determine whether they die from
apoptosis or necrosis. Indeed, TNFa-induced necrotic cell
death is preferentially observed in cells that are stimulated
with TNFa alone,53 and not in those stimulated with TNFa plus
CHX or emetine.53,54 Therefore, TNFa-induced apoptosis
might prevail over necrosis in the presence of protein
synthesis inhibitors,76 although the detailed molecular
mechanism remains unknown.

Concluding Remarks

Recent advances in gene targeting techniques convincingly
demonstrate the proapoptotic and antiapoptotic function of
the JNK signaling cascade. Although the caspase cascade is
sufficient for the induction of apoptosis, the activation of the
JNK pathway itself does not appear to be sufficient for
determining cell fate. As Lin12 describes, the JNK cascade
appears to regulate the path to cell death or survival. In this
respect, the central checkpoint at which cell fate is determined
involves NF-kB. As described in Figure 5a, activation of
NF-kB is sufficient for inhibiting the cascades induced by
proapoptosis-inducing molecules, caspases, JNK, and ROS
in normal cells. Under the conditions, in which NF-kB-
mediated survival signals are blocked (such as cellular
parasitism by viruses and other pathogens, or genotoxic
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Figure 5 Signaling crosstalk between NF-kB and JNK. (a) Activation of
NF-kB by TNFa induces expression of GADD45b and XIAP that downregulates
JNK activation. NF-kB also induces expression of c-FLIP, Bcl-xL, and A1/Bfl-1
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induction of these molecules. Furthermore, ROS also promote JNK activation.
Through the coordinate activation of these pathways, TNFa induces apoptosis
and necrosis
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stress), JNK and ROS promote cell death in a context-
dependent manner (Figure 5b). More importantly, several
studies indicate that treatment of cells with caspase inhibitors
enhances ROS-dependent necrosis both in vitro and in
vivo.70,77 To understand the NF-kB-mediated survival signals
in more detail and to develop novel strategies to prevent
excessive cell death under the pathological conditions, future
studies will focus on identifying the molecules involved in JNK
activation and ROS accumulation.
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