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Abstract
MHC class II molecules are thought to present peptides
derived from extracellular proteins to CD4þ T cells, which
are important mediators of adaptive immunity to infections. In
contrast, autophagy delivers constitutively cytosolic material
for lysosomal degradation and has so far been recognized
as an efficient mechanism of innate immunity against bacteria
and viruses. Recent studies, however, link these two
pathways and suggest that intracellular cytosolic and nuclear
antigens are processed for MHC class II presentation after
autophagy.
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Introduction

The T cells of the adaptive immune system monitor all body
cells for the presence of pathogenic constituents with an
elaborate detection system, involving display of microbial
fragments on major histocompatibility complex (MHC) mole-
cules at the cell surface. Proteins derived from intracellular
or internalized pathogens are degraded by intracellular
proteases into small protein fragments or peptides, which
subsequently are loaded into the peptide-binding groove of
MHC molecules. Peptide–MHC complexes are then pre-

sented on the cell surface and recognized by T cells with their
specific T-cell receptor (TCR). There are two main classes of
classical and polymorphic MHC molecules, MHC class I and
II, that present peptides to two classes of T cells with different
effector functions.1 MHC class I molecules present peptides
to cytolytic CD8þ T cells and MHC class II molecules present
peptides to CD4þ T cells, which can have both immuno-
regulatory and cytolytic functions. Protein fragments for MHC
class I and II presentation are in their majority generated by
distinct and different proteolytic events. MHC class I ligands
are primarily produced by the proteasome, whereas MHC
class II ligands are generated in lysosomes.2,3 In this review,
we will discuss the classical paradigm concerning the antigen
processing for MHC class I and II presentation and will
describe recent developments suggesting that autophagy
contributes to the processing and presentation of intracellular
antigens on MHC class II molecules.

The Paradigm of Antigen Processing for
MHC Presentation

The two main classes of classical and polymorphic MHC
molecules are loaded with protein fragments in distinct cellular
compartments and their peptide cargo reaches these com-
partments by different routes: Antigens for MHC class I
presentation are primarily degraded by the proteasome, a
large multicatalytic protease complex residing in nucleus and
cytosol.4 Targeting of these antigens for proteasomal degra-
dation is often mediated by ubiquitinylation.5 A large propor-
tion of MHC class I ligands is derived from the so-called
defective ribosomal products (DRiPs),6,7 which are degraded
by the ubiquitin–proteasome system immediately after mis-
folding or premature termination of translation8 and provide
cells with a rapid warning system against newly synthesized
microbial proteins. The peptides generated by the protea-
some are imported via the transporter associated with antigen
processing (TAP) into the endoplasmic reticulum (ER),9

where they meet newly synthesized MHC class I molecules
that have been cotranslationally inserted into the ER. With
the help of the MHC class I loading complex, which includes
chaperones, aminopeptidases and thiol oxidoreductases.10–12

individual peptides of 8–9 amino acids in length are loaded
into the peptide-binding groove of MHC class I molecules.
Stable peptide–MHC class I complexes are then exported
via the Golgi apparatus to the cell surface for recognition
by CD8þ T cells. Since MHC class I ligands are mainly
generated in this proteasome- and TAP-dependent fashion,
MHC class I antigens are thought to be primarily of cytosolic
and nuclear origin.

In contrast, MHC class II ligands are thought to originate
mainly from extracellular antigens, which are endocyto-
sed by constitutively MHC class II-positive professional
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antigen-presenting cells (APCs) for presentation to the
immune system. These endocytosed antigens are degraded
by lysosomal endo- and exoproteases and meet MHC class II
molecules in the so-called MHC class II compartments
(MIICs) or class II vesicles (CIIV).13 MHC class II molecules
migrate to these late endosomal compartments after cotran-
slational insertion into the ER, because they associate with
the transmembrane protein invariant chain (Ii). Ii not only
blocks the peptide-binding groove of newly synthesized MHC
class II molecules,14 but also contains an endosomal targeting
signal15 and thus targets MHC class II molecules to late
endosomes, where they meet peptides generated by lysoso-
mal proteases. In this MHC class II loading compartment,
lysosomal proteases also degrade the Ii, and the remaining
peptide (CLIP for class II-associated Ii peptide) is exchanged
for antigenic peptides with the help of the nonclassical MHC
class II molecule HLA-DM.16 As a result of this pathway, MHC
class II ligands are generated from extracellular antigens after
endocytosis and degradation in lysosomes. Hence, MHC
class II antigens are thought to be primarily of extracellular
origin.

Nonclassical Pathways of Antigen
Presentation

Until recently, MHC class I and II molecules were thought to
be specialized in presenting peptides derived from distinct
sources. MHC class I ligands were thought to be derived from
cytosolic and nuclear proteins, whereas MHC class II ligands
were believed to be solely generated from extracellular
sources. Although these classical pathways of antigen
presentation remain correct, it has become apparent that
other pathways contribute to antigen presentation and that
antigens from inside and outside the cell can be presented on
both MHC class I and II.17

The classical paradigm of antigen processing was first
challenged, when it was discovered that professional APCs,
especially dendritic cells (DCs), are able to present extra-
cellular antigen not only on MHC class II, but also on MHC
class I.18,19 This new exogenous pathway, termed ‘cross-
presentation’ pathway, is thought to be important in both
immunity and tolerance. It allows DCs to prime CD8þ T-cell
responses to antigens synthesized by cells other than DCs
and to trigger both CD8þ and CD4þ T-cell responses at the
same time, generating more effective and sustained T-cell
responses.

The argument that the immune system should be able
to survey all cell types and that antigens from all cellular
compartments should be presented on both classes of MHC
molecules, implies that a similar change in the antigen
presentation paradigm might be necessary for MHC class II.
Pathogens that replicate in the cytoplasm of professional
APCs should be detectable for the immune system via both
MHC class I and II presentation. Indeed, it has been shown
that MHC class II molecules can present intracellular
antigens, including cytosolic and nuclear proteins. This
nonclassical MHC class II pathway was coined ‘endogenous
MHC class II pathway’ and will be further discussed in the
next paragraphs.

Endogenous MHC Class II Processing

The first evidence for the existence of an endogenous MHC
class II pathway came from the analysis of natural MHC
class II ligands. When MHC class II molecules were purified,
primarily from Epstein–Barr virus (EBV)-transformed B
lymphoblastoid cell lines (LCL), the majority of natural MHC
class II ligands were found to be derived from intracellular
proteins.20,21 Surprisingly, more than 20% of the identified
sequences came from cytosolic proteins21,22 (Table 1). The
sources of these peptides included cytoskeletal proteins
(e.g. actin, tubulin, F-actin capping protein), constitutive
metabolic enzymes (e.g. glyceraldehyde-3-phophate dehy-
drogenase (GAPDH), aspartate aminotransferase (AAT)),
heat shock proteins (Hsp70)) and proteins involved in
vesicular trafficking (Rab5A). In addition, a few of the
identified peptides were derived from nuclear proteins, such
as histones23 (Table 1).

Further evidence for the existence of an endogenous MHC
class II pathway came from the fact that CD4þ T cell could
recognize cytosolic and nuclear proteins after endogenous
processing (Table 2). This pathway for CD4þ T-cell recogni-
tion was first described by Long and colleagues, who studied
presentation of cytosolic measles virus and influenza virus
antigens to CD4þ T cells.24–27 These authors performed cell-
mixing experiments to test whether the recognized antigens
exit the cell and re-enter via endocytosis, that is, follow the
classical MHC class II pathway. They observed, however, that
antigen-specific CD4þ T cells did not recognize mixtures
of antigen-negative, HLA class II-matched B cells with
antigen-expressing, HLA class II-mismatched B cells, but
only antigen-expressing, HLA class II-matched B cells,
thereby demonstrating that the antigen was not released
and then endocytosed for MHC class II presentation.24,25

These experiments showed for the first time that endogenous
processing of cytosolic antigens could lead to MHC class II
presentation.

Subsequently, presentation of endogenous proteins on
MHC class II has been described for a number of other viral
antigens28–31 as well as self-antigens,21,32–34 model anti-
gens,35–40 and tumor antigens41,42 (Table 2). On the basis of
these findings, four endogenous MHC class II processing
pathways can be postulated43–45 (Figure 1). Firstly, secreted/
transmembrane proteins (e.g. influenza hemagglutinin
(HA)28) can associate with newly synthesized MHC class II
molecules in the ER, and then follow MHC class II–Ii
complexes to endosomal compartments, where processing
and peptide loading occurs. This pathway contributes the
majority of endogenous MHC class II ligands, which were
found to be derived from secreted/transmembrane proteins
that intersect with the endocytic pathway.21–23 Secondly,
cytosolic peptides can be imported into the ER via TAP for
binding to MHC class II molecules.25 In certain APCs like DCs,
this pathway is even accessed by exogenous antigens like
influenza HA and neuraminidase, which leave the endosome
for proteasome- and TAP-dependent processing onto MHC
class II.46 A third pathway involves processing of cytosolic
or nuclear proteins (e.g. glutamate decarboxylase 65
(GAD65)33) by the proteasome and is TAP independent.33,40

For this pathway, peptides seem to be imported directly into
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endosomal/lysosomal compartments, via a transporter

that was recently suggested to be Lamp-2a, the transporter

of chaperone-mediated autophagy.47 In addition to these

proteasome-dependent pathways, cytosolic and nuclear

proteins can also be processed by a proteasome- and TAP-

independent pathway: This fourth pathway involves the direct

import of cytosolic/nuclear proteins (e.g. the EBV nuclear

antigen 1 (EBNA1)30,31) into endosomes/lysosomes and is

in part mediated by autophagy. The latter three pathways

(processing of cytosolic or nuclear proteins by proteasome-

dependent or -independent mechanisms) contribute more

than 20% of endogenous MHC class II ligands.21–23 There-

fore, proteins residing in a compartment that is topologically

distinct from the endocytic route and thus isolated from the

classical MHC class II pathway, can gain access to MHC class

II molecules and broaden the repertoire of MHC class II

ligands.

Proteasome- and TAP-Independent
Processing of Cytosolic and Nuclear
Proteins

TAP- and proteasome-independent antigen processing of
cytosolic and nuclear proteins onto MHC class II has been
described for Influenza A matrix protein 1 (M1),27,48 neomycin
phosphotransferase II35 and the nuclear antigen 1 of the
Epstein–Barr virus (EBNA1).31 Lysosomal proteases were
shown to be responsible for antigen processing onto MHC
class II in all three cases. For neomycin phosphotransferase II
and EBNA1, autophagy was implicated in the delivery of
antigens into lysosomes, while this has not been demon-
strated for influenza matrix protein M1. However, when the
half-life of M1 was modified with the N-end rule, only long-lived
M1 (t1/2¼ 5 h) was presented on MHC class II and able to
stimulate CD4þ T cells, while short-lived M1 (t1/2¼ 10 min)

Table 1 Cytosolic and nuclear protein sources of natural MHC class II ligands

Protein source Localization Cell typea References

Actin Cytosol B, M 21,61,96

Actin-like protein Cytosol M 21

F-actin capping protein Cytosol B, M 21

Tubulin a- and b-chain Cytosol B, M 21,61

Microtubule-associated protein PB1 Cytosol B 21

a-Catenin Cytosol B 21

Clp36 Cytosol B 21

GAPDH Cytosol B, M, E 21,23,61,97

Aspartate aminotransferase Cytosol B, M 21

Alcohol dehydrogenase Cytosol M 21

Glucose-6-phosphate isomerase Cytosol M 21

Casein kinase 1-a Cytosol B 21

Rab5A Cytosol B 21

Cofactor D Cytosol B 21

pp65 macrophage protein Cytosol M 21

ATP citrate lyase Cytosol B 61

Actin-interacting protein 1 Cytosol B 61

Triosephosphate isomerase 1 Cytosol B 61

Peptidylprolyl isomerase A (cyclophilin A) Cytosol B 61

Atg8 (MAP1LC3b) Cytosol B 61

Annexin A2 Cytosol B 61

Rab7 Cytosol B 61

Acetyl-CoA acyltransferase 1 Cytosol B 61

Dipeptidyl peptidase II Cytosol B 61

Phosphoglycerate kinase Cytosol B 23,61

Pyruvate kinase Cytosol B, E 23,97

Macrophage migration-inhibitory factor (MIF) Cytosol B 23,61

GBP-2 (IFN-induced guanylate-binding protein) Cytosol B 22

NADH-cytochrome b5 reductase Cytosol B 22

c-Myc Cytosol B 22

k-Ras Cytosol B 22

Myosin Cytosol E 97

Fatty acid synthase Cytosol E 97

a-Enolase Cytosol B 61,97

Elongation factor 1 Cytosol B 61,97

NEDD4La Cytosol B 61

Hsc70 Cytosol/Nucleus B 22,23,61

Hsp90-beta Cytosol/Nucleus B 23

Ribosomal proteins S10, S13 Cytosol/Nucleus B 61

Ubiquitin Cytosol/Nucleus B 61

EBV major capsid protein Cytosol/Nucleus B 22

Histone H3 Nucleus B 23

Histone H2B Nucleus B 61

Rad23b Nucleus B 61

RAN Nucleus B 96

aCell types: B¼B cells; M¼macrophages; E¼epithelial cells
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Table 2 Intracellular antigens processed endogenously onto MHC class II

Type of antigen Protein Localization Cell type References

Viral Measles virus matrix protein Cytosol HLA-DR transf. fibroblasts 24

Measles virus Cytosol HLA-DR transf. fibroblasts 24

nucleocapsid protein
Influenza A virus matrix protein 1 Cytosol, nucleus B cells 26,27,48

Influenza A virus Hemagglutinin Cytosol, ER HLA-DR-transf. HeLa, B cells 25,28

Hepatitis C virus (HCV) core protein Cytosol B cells 29

Epstein–Barr Virus (EBV) EBNA1 Nucleus B cells 30,31

Self Glutamate decarboxylase (GAD65) Cytosol B cells 33

Complement C5 Cytosol B cells, macrophages 32

Actin, AAT, Rab5 Cytosol B cells, DCs 21

Igl light chain ER B cells 34

Model Hen egg lysozyme (HEL) Cytosol, ER, mitoch., nucleus B cells, MHC class II-transf. sarcoma cells 36,38

Ovalbumin, conalbumin Cytosol B cells, macrophages 39

Neomycin phosphotransferase II Cytosol, nucleus B cells, IFNg-treated epithelial cells 35

b-Galactosidase Nucleus Thymic epithelial cells 37

I-Ea52–68-GFP Cytosol Macrophages 40

Tumor MUC-1 Cytosol Dendritic cells 42

Mutated Cdc27 Cytosol HLA-DR-transf. 293 cells, melanoma cells 41

Figure 1 Proposed processing pathways for endogenous presentation of intracellular antigens on MHC class II. Four different pathways have been postulated: (1)
Secreted/transmembrane proteins (e.g. influenza A hemagglutinin 28) can associate with newly synthesized MHC class II molecules after their cotranslational synthesis
into the ER via the Sec61 transporter. Complexes of antigen with MHC class II–Ii then traffic to endosomal compartments, where processing and peptide loading onto
MHC class II occurs. (2) Similar to the classical MHC class I-processing pathway, cytosolic peptides (e.g. a 12-mer HA peptide 25) can be imported via TAP into the ER
and then associate with MHC class II molecules. It is thought that peptides either bind into the peptide-binding groove of MHC class II molecules that failed to associate
with invariant chain (Ii) or they comigrate with MHC class II–Ii complexes and get loaded onto MHC class II in the endosomal MIIC with the help of HLA-DM. (3) Other
cytosolic proteins (e.g. GAD65 33) are degraded by the proteasome and then follow a TAP-independent pathway onto MHC class II. It is thought that peptides are directly
imported into endosomal/lysosomal compartments via a peptide transporter, possibly Lamp-2a.47 (4) Cytosolic and nuclear proteins (e.g. the EBV nuclear antigen 1
(EBNA1)31) can be processed by lysosomal proteases after direct import into endosomal/lysosomal compartments
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failed to be detected by M1-specific CD4þ T cells, but
stimulated M1-specific CD8þ T cells.48 Autophagic protein
degradation in lysosomes has been suggested to mainly
discard long-lived proteins (t1/240.5 h),49 whereas many
short-lived substrates are degraded by the proteasome.5,50

Therefore, both long-lived M1 and EBNA1 (t1/2420 h in B
cells)51–53 fit the long half-life criteria of autophagy substrates.
In addition, the long-lived cytosolic proteins GAPDH
(t1/2¼ 130 h)54 and Hsc70 (t1/2¼ 20 h)55 were frequently
identified as a source of natural MHC class II, but not class I
ligands (Table 1).20 Hence, autophagic degradation might
deliver long-lived endogenous proteins into the MHC class II
pathway.

Delivery of Antigens to Lysosomes for
MHC Class II Processing Via Autophagy

Involvement of autophagy in endogenous MHC class II
processing has been demonstrated for only a few antigens.
Neomycin phosphotransferase II,35 complement C532 and
MUC142 were found to be processed onto MHC class II via
autophagy after transfection. All these studies employed
the pharmacologic inhibitors of autophagy, wortmannin56 and
3-methyladenine57 to inhibit CD4þ T-cell recognition of these
antigens, but did not report any localization of the respective
antigens to autophagosomes upon inhibition of lysosomal
degradation. To date EBNA1 is the only pathogen-derived
antigen for which processing onto MHC class II after
autophagy has been demonstrated.31 We could visualize
EBNA1-containing autophagosomes after inhibition of lyso-
somal degradation by fluorescence and electron microcopy.
Furthermore, MHC class II-restricted EBNA1 recognition
by CD4þ T cells was inhibited after RNA silencing of
the essential autophagy gene atg1258 as well as after
3-methyladenine treatment. Autophagic delivery of EBNA1
for MHC class II processing was demonstrated in B-cell lines,
which either were transfected with EBNA1 or expressed
physiological levels of EBNA1 after B-cell transformation by
EBV. These studies suggest that there might be a substantial
overlap between the autophagic route of degradation and
MHC class II loading. This implies that autophagic destruction
of other pathogens like Mycobacterium tuberculosis59 and
Streptococcus pyogenes60 might also result in MHC class II
presentation of antigens from these pathogens. Since IFNg
has been shown to upregulate autophagy,59 activated CD4þ

T cells might then even further stimulate infected cells in order
to clear intracellular pathogens. Therefore, autophagy might
mediate innate resistance to pathogens, lead to MHC class II
presentation of pathogenic determinants and be used as
effector mechanism of adaptive immunity to target intracel-
lular pathogens.

Further evidence for the involvement of autophagy in
antigen processing for MHC class II presentation comes from
biochemical studies on natural HLA-DR ligands.61 In this
study, the authors characterized peptides, which were eluted
from immunoaffinity-purified HLA-DR molecules of an EBV-
transformed B LCL. The MHC class II ligandomes of LCLs
in the steady state and after induction of autophagy via
starvation were compared. After 24 h of starvation the MHC

class II presentation of peptides from intracellular and
lysosomal proteins rose by more than 50%, while presentation
of membrane and secreted proteins remained constant. The
four most regulated MHC class II ligands were derived from
one lysosomal (cathepsin D) and three cytosolic/nuclear
proteins (eukaryotic translation elongation factor 1 alpha,
ubiquitin-protein ligase NEDD4La and RAD23 homolog B
nucleotide excision repair protein). In the same study, the
extensive analysis of HLA-DR ligands from LCLs cultured in
nutrient-rich conditions revealed a peptide, derived from the
essential autophagy gene product Atg8/LC3. Atg8/LC3, which
is coupled to the autophagosome membrane in an ubiquitin-
like fashion, is essential for autophagosome formation.62

These findings suggest that upregulation of autophagy leads
to enhanced MHC class II presentation of cytosolic/nuclear
proteins and that autophagosomes constitutively fuse with
MHC class II-loading compartments.

Transport of Autophagosomes to MHC
Class II Loading Compartments

It is well established that MHC class II molecules localize to
endosomal compartments, where they meet processed
antigen and get loaded with antigenic peptide. The nature
of this MHC class II-loading compartment (termed ‘MIIC’
for MHC class II compartment) has been studied extensively
using immunofluorescence or electron microscopy and cell
fractionation.13,63,64 These studies have characterized MIICs
as late endosomal compartments containing the late endo-
somal/lysosomal markers LAMP1, CD63 and partially pro-
cessed cathepsin D. Since no late endosomes/lysosomes
devoid of MHC class II and HLA-DM are observed in MHC
class II-expressing APCs, it is thought that MHC class II-
loading compartments are conventional endosomal compart-
ments that, in addition, contain the components for MHC class
II loading, namely MHC class II and the peptide-loading
chaperone HLA-DM.13,65,66 This implies that classical APCs
like macrophages, B cells and DCs have equipped late
endosomes for MHC class II loading.

In electron microscopy, MIIC compartments have a typical
multivesicular or multilaminar morphology.65–68 The multi-
vesicular phenotype can be explained by the transport of MHC
class II molecules to multivesicular endosomes, which are
abundant in the endocytic pathway.69 The multilaminar,
‘onion-like’ phenotype of MIICs, however, has remained more
enigmatic. It is tempting to speculated that MIICs obtain their
multilaminar phenotype by fusion of MHC class II-containing
endosomes with autophagosomes, given the fact that
autophagosomes are delineated by a double membrane and
often contain internal membrane sheets.70,71 Indeed, electron
microscopy studies have demonstrated that the endocytic
pathway converges with the autophagy pathway: Endosomal
compartments, labeled with colloidal gold as an endocytic
tracer, were found to fuse with double-membrane bound,
gold-negative autophagosomes to form endosome–auto-
phagosome fusion compartments called ‘amphisomes’.72,73

Amphisomes contained both endocytosed gold and unde-
graded cytoplasm and were delimited by double or multiple
membranes.73 Often, fusion compartments also contained
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multiple internal vesicles, presumably due to the fusion of
autophagosomes with multivesicular endosomes. Hence,
autophagosomes fuse with different types of endosomal
compartments and thus deliver autophagy substrates into
the endocytic route. In MHC class II-expressing cells, this
fusion event could constitutively lead to the delivery of
autophagy substrates into endosomal MIIC compartments
and thus loading of processed autophagy substrates onto
MHC class II molecules (Figure 2).

Possible Role for MHC Class II Processing
Via Autophagy During the Development of
the Immune System and during Adaptive
Immune Responses

So far MHC class II presentation after autophagy has only
been described in classical APCs like macrophages,32 B
cells31,35 and DCs.42 However, endogenous MHC class II
processing might be much more relevant for MHC class II-
positive tissues with little or no phagocytic capacity. Along

these lines, murine cortical epithelial cells of the thymus
were found to have high constitutive autophagy, especially
in newborn mice.74 These cells are believed to have low
phagocytic potential, but are nevertheless involved in positive
selection of CD4þ T cells.75 This implies that the MHC class II
complexes involved in positive CD4þ T-cell selection have to
be loaded from endogenous sources, and high constitutive
autophagy might deliver some of the necessary antigens into
MHC class II-loading compartments.

Thymic epithelium is not the only somatic tissue with MHC
class II presentation. Upon immune activation and inflam-
mation, endothelial and epithelial cells as well as nearly all
lymphocytes can upregulate HLA class II,76 while phago-
cytosis is not enhanced. This suggests that MHC class II
molecules on inflamed tissues might display primarily
endogenous ligands for immune surveillance by CD4þ T
cells. The induction of CD4þ T cells alongside with CD8þ T
cells is an important prerequisite for an effective adaptive
immune response, since the development77–79 and main-
tenance80–84 of CD8þ memory T cells is dependent on help
from CD4þ T cells. Additionally, CD4þ T cells can have direct

Figure 2 Autophagy as a novel pathway for endogenous MHC class II presentation. Classically, extracellular antigens were thought to be the sole source of peptides
for MHC class II presentation. Extracellular antigens are taken up via endocytosis/phagocytosis into endosomal compartments and are degraded by lysosomal
proteases. Antigenic peptides generated in this process get loaded onto MHC class II molecules in late endosomal MHC class II-loading compartments (MIICs) with the
help of the peptide-loading chaperone HLA-DM, and MHC class II–peptide complexes are presented on the cell surface for recognition by CD4þ T cells. MHC class II
molecules reach the endosomal pathway after their synthesis into the ER and association with a glycoprotein called invariant chain (Ii) (shown in blue), which contains a
targeting signal for endosomes. Recent evidence, discussed in this review, suggests that cytosolic and nuclear antigens can gain access to MHC class II-loading
compartments via autophagy. Thus, autophagic degradation contributes to MHC class II presentation of intracellular antigens to CD4þ T cells
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cytotoxic effects on virus-infected cells85–88 and contribute to
the control of viral infections.89–93 Given these important roles
of CD4þ T cells for adaptive immunity, it seems crucial that
endogenous antigen be presented not only on MHC class I,
but also on MHC class II. We suggest that part of these
endogenous MHC class II ligands are generated from
autophagy substrates and that MHC class II presentation of
long-lived endogenous substrates complements MHC class I
presentation of short-lived endogenous substrates to elicit
T-cell activation during immune responses.

Conclusions

Autophagy is an innate defense mechanism against microbial
pathogens.94,95 Recent evidence suggests that autophagic
degradation products are displayed on MHC class II for
immune surveillance by CD4þ T cells. So far autophagy has
been found to deliver nuclear and cytosolic proteins for MHC
class II presentation in professional APCs, namely DCs,
macrophages and B cells. Since, especially in DCs, endo-
somes seem to be leaky and release exogenous antigen for
crosspresentation on MHC class I, it is also conceivable that
autophagic delivery of endogenous antigen into late endo-
somes contributes to MHC class I loading after protein escape
into the cytosol. Thus, autophagy may contribute to immune
control of infected APCs, such as EBV-transformed B cells.
However, we suggest that this pathway is also used for the
immune surveillance of tissues that upregulate MHC class II
upon inflammation as well as for positive T-cell selection by
thymic epithelial cells.
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