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Abstract
Slits, semaphorins and netrins are three families of proteins
that can attract or repel growing axons and migrating neurons
in the developing nervous system of vertebrates and
invertebrates. Recent studies have shown that they are
widely expressed outside the nervous system and that they
may play important roles in cancers. Several of the genes
encoding these proteins are localized on chromosomal region
associated with frequent loss-of-heterozygosity in tumors
and cancer cell lines and there is also significant hyper-
methylation of their promoter suggesting that they may act as
tumor suppressors. In addition, proteins in all these families
and their receptors appear to control the vascularization of
the tumors. Last, many axon guidance molecules also
regulate cell migration and apoptosis in normal and
tumorigenic tissues. Overall, this suggests that molecules
that could mimick or block the activity of axon guidance
molecules may be used as therapeutic agents for the
treatment of malignancy.
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Introduction

Nervous systems are composed of excitable cells, the
neurons, connected by long cellular processes, the axons,
that form synaptic networks of increasing complexity from
simple invertebrates to primates. However, many cells in the
nervous system (up to 90% in human1) are not neurons but
glia: astrocytes, microglial cells and oligodendrocytes. Astro-
cytes and microglial cells exert several functions such as the
maintenance of brain homeostasis, while oligodendrocytes
(that do not exist in invertebrates) produce the myelin that
enwraps axons thereby allowing the rapid saltatory conduc-
tion of action potentials. During development, all these cells
differentiate from multipotent progenitors that proliferate in
restricted locations of the embryo. In most animal species,
postmitotic neurons and glial cells migrate, sometimes over
long distances, to reach their final destination. Concomitantly,
neurons extend axons, tipped at their leading edge by a
growth cone, toward their target cells, grow dendrites and
establish synaptic contacts. All these precisely orchestrated
cellular events are regulated by a plethora of secreted and
membrane-bound proteins, most of which were identified in
the last 10–15 years using genetic and biochemical ap-
proaches.2 Interestingly, the mechanisms and the molecules
that control neural development are highly conserved in
evolution.3 Recently, it was discovered that many so-called
‘axon guidance’ molecules also control neuronal migration
and neuronal survival. In addition, they are not confined to the
nervous system but are widely expressed in many developing
and mature organs in the body.4 Their normal function in the
adult CNS and other adult tissues is essentially unknown.
However, an increasing number of studies suggest that they
are involved in many pathological processes and in particular
cancers.
We will review here recent studies on the function in cancer

of three families of axon guidance molecules and their
receptors, the netrins, the slits and the semaphorins that
havemany common properties: most are secreted and all can
be repulsive or attractive for growing axons and migrating
neurons. Particular attention will be paid to recent data giving
new insights on the diversity/complexity of ligand–receptor
interactions. The implication of the ephrins and their Eph
receptors, another family of axon guidance molecules, in
tumorigenesis has been also demonstrated and recently
reviewed and will not be discussed here.5
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Semaphorins and their Receptors

The Semaphorins were simultaneously discovered in insects
and chick embryos as very potent axon repellents able to
induce the collapse of axonal growth cones.6,7 In less than 10
years, more than 30 semaphorins have been cloned in
mammals and some orthologs have been found in virtually all
animal phyla and in certain DNA viruses.8 Eight semaphorin
subclasses were distinguished based on sequence similarity
and distinctive structural features.9 The semaphorin sub-
classes, 1 and 2, contain semaphorins identified in inverte-
brate species. Subclasses 3–4–6 and 7 contain vertebrate
semaphorins (Figures 1 and 2). Class 5 semaphorins exist
both in vertebrate and invertebrate species (Figure 2). All
semaphorins share a highly conserved 500 amino-acid motif,
the semaphorin domain that is also present in other proteins
(Winberg et al10 and Gherardi et al11; see below).
Class 3 secreted semaphorins have been by far the most

studied and all were shown to be chemorepulsive for many
classes of axons (Figure 1).8 However, a few semaphorins
can also attract some axons and dendrites.12–14 Pioneering
studies showed that their receptors are multimolecular
complexes with neuropilins as binding moieties and plexins

as signaling moieties. Among the six class 3 semaphorins
identified to date, Sema3A, Sema3C, Sema3D, Sema3E
were initially found to bind to neuropilin-1 with similar
affinities.15–18 A second neuropilin family member, neuropi-
lin-2, which has at least six spliced variants,16,17 can bind
Sema3C and Sema3F, but not Sema3A with high-affinity.17

The cytoplasmic tail of neuropilins is very short but can
interact with a cytoplasmic protein containing a central PSD-
95/Dlg/ZO-1 (PDZ) domain that might work as a molecular
adapter coupling neuropilin-1 to membrane trafficking ma-
chinery.19 Many studies have shown that secreted semaphor-
in function requires plexins as signaling subunits. Plexins are
large membrane spanning proteins with a highly conserved
cytoplasmic domain devoid of any obvious enzymatic activity.
Their extracellular domain also contains a divergent sema-
phorin domain and two to three MET-related sequences
(MRS, Figure 1). Although plexins do not have kinase activity,
they share sequence homology in the extracellular domain
with the receptor tyrosine kinases MET (the receptor for
scatter factor-1/hepatocyte growth factor) and Ron (the
receptor for macrophage-stimulating protein20). Nine plexins
were identified and regrouped into four subclasses (plexin-A–
plexin-D). Several studies showed that plexin-A interact with
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Figure 1 Secreted semaphorins and their receptors. All class 3 semaphorins identified to date were initially found to bind to neuropilins and use plexin-As as signaling
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neuropilins and are the signaling moiety of the receptor
complex for secreted semaphorins.8 A cell adhesionmolecule
of the immunoglobulin (Ig) superfamily, L1-CAM is also part of
the receptor complex for Sema3A.21 L1 binds to neuropilin-1
and upon Sema3A binding, L1 and NP-1 are cointernalized
through a clathrin-dependent mechanism mediated by L1.22

Interfering with this endocytosis blocks Sema3A inhibitory
activity on axons. It remains to determine if additional cell
adhesion molecules are involved in the signaling of other
secreted semaphorins.
However, more recent data challenge this classical

model.23 During development, Sema3E was found to repel
migrating endothelial cells and control vascular patterning in
vivo. Surprisingly, in this systemSema3E function is mediated
by plexin-D1 and does not require neuropilin-1. Moreover, and
in contradiction with earlier studies, Sema3E, but also
Sema3B were found unable to bind to neuropilins. This result
is hard to reconcile with previous findings that showed that
Sema3B can act as antagonist for Sema3A on receptors
containing neuropilin-1.24 It also suggests that Sema3B and
other secreted semaphorins could signal through different
receptors in different systems. Additional studies will be
required to explain these discrepancies. Last, at least some
Plexin-A are also receptors for class 6 transmembrane
semaphorins (Toyofuku et al,25 see below).

SEMA3C was the first secreted semaphorin proposed to be
involved in tumorigenesis.26 A screen for genes responsible
for non-MDR (multidrug resistance) drug resistance in human
ovarian cancer cell line (TyKnuR) and lung cancer cell line
(Lu65/CDDP and MS-1/CDDP) identified SEMA3C as a gene
overexpressed in these cells. Several glioma cell lines also
express SEMA3C, neuropilins and plexin-As.27 The role of
SEMA3C in these cancer cell lines is unclear. Sema3C binds
neuropilins. As neuropilin-1 is implicated in angiogenesis (see
below), SEMA3C could control directly or indirectly the
vascularization of the tumors. Sema3C was also shown to
promote the survival of cultured cerebellar granule cells28 and
to attract cortical axons.13 Sema3C could thus have an
autocrine/paracrine protective action on tumor cells or
stimulate their migration. It will be important to determine if
these cancer cell lines express SEMA3C receptors, such as
neuropilin-2.
SEMA3E expression was also correlated positively with

tumor progression in mouse mammary carcinoma29 and its
mRNA (messenger ribonucleic acid) is overexpressed in
metastatic human lung adenocarcinoma cell lines (HAL-
8Luc).30 However, sema3E function in tumorigenesis is also
unclear. On dissociated neurons, Sema3E has either a
repulsive action or a growth promoting one that is dose-
dependent.31,32 As mentioned before, this protein and its
receptor plexin-D1 were recently shown to control angiogen-
esis during development23,33,34 and both could exert a similar
function in tumors.
To date, most studies on semaphorins and cancer have

focused on sema3B and sema3F. It is known that there is a
frequent allele loss in chromosome region 3p in many cancers
(ovarian, breast gastric, renal, lung, etc.) and putative tumor
suppressor genes were mapped to the 3p21.3 locus.
Interestingly, both SEMA3B and SEMA3F were mapped to
this region and thus suggested to play a direct role in
tumorigenesis.35 Moreover, SEMA3B has been found at
reduced levels or not expressed in lung cancer cells36,37

and is also often mutated, suggesting that SEMA3B may play
a suppressive role in tumorigenesis. Last, SEMA3B promoter
is hypermethylated in non-small-cell lung cancer cell lines or in
tumor samples, and there is a significant loss of hetero-
zygosity (LOH) in some tumors.36,38 SEMA3B transfection in
lung cancer cell lines or application of exogenous soluble
Sema3B ectodomain decrease colony formation and induces
apoptosis.36 An antiproliferative activity of SEMA3B has been
shown for breast cancer cell lines.39 In addition, in lung and
breast cancer cell lines, SEMA3B effects are antagonized by
the angiogenic factor vascular endothelial growth factor
(VEGF) 165,39 suggesting that SEMA3B tumor suppressor
activity involves VEGF signaling. Ovarian adenocarcinoma
cells (HEY cells) also express 25-fold less SEMA3B than in
normal human ovary and have decreased tumorigenic
properties in xenograft model.40 In addition, after stable
transfection with SEMA3B expression constructs, their pro-
liferation rate is decreased. Last, SEMA3B may also act as a
mediator of p53-suppressor activity in glioblastoma cell
lines.41 The emerging model39 suggests that in premalignant
cells, the activation of the p53 pathway leads to a decrease of
SEMA3B expression and/or an overexpression of its antago-
nist VEGF, therefore allowing cancer cells to survive and
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Figure 2 Membrane bound semaphorins and their receptors. Class 4
semaphorins have several known receptors. Sema4A receptor is a member of
the T cell, immunoglobulin and mucin domain proteins (TIM) family, Tim-2.64

Sema4D can bind plexin-B1 but its major receptor in the immune system is CD72.
Other class 4 receptors are unknown. Class 5 semaphorins contains
thrombospondin repeats in their extracellular domain.68 Sema5A binds to
plexin-B3 but also chondroitin sulfate proteoglycans and heparan sulfate
proteoglycans. Sema6D has recently been shown to bind plexin-A1. Sema7A is
bound to the plasma membrane by a GPI anchor and could bind to plexin-C1 and
integrins
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proliferate. As HEY cells and lung cancer cells express
neuropilins, it was proposed that in tumor cells, SEMA3B
signals through these receptors and competes with neuropi-
lin-mediated VEGF signaling. However, recent data suggest
that this is not likely to occur as, at least in transfected cells,
sema3B does not bind to neuropilins but to plexins (see
above). The expression of plexins in most cancer cell lines will
have to be carefully investigated.
SEMA3F expression is also downregulated in several

cancer cell lines and tumors (see Roche et al35 for a review)
but it is overexpressed in migrating lung cancer cells.42

SEMA3F inhibits the attachment and spreading of breast
cancer cells (MCF7) apparently through interaction with
neuropilin-1 and not neuropilin-2.43 SEMA3F is also able to
antagonize VEGF action on these cells. Like Sema3A,
Sema3F can inhibit angiogenesis and endothelial cell migra-
tion but through neuropilin-2 binding.44,45 SEMA3F over-
expression in mouse fibrosarcoma or ovarian cancer cells
block their proliferation.36,46 More recently it was shown that
SEMA3F overexpression in highly metastatic melanoma cells
(that only express neuropilin-2 and not neuropilin-1, VEGF-R1
or VEGFR-2) inhibits adhesion and migration but not
proliferation.44 These SEMA3F-transfected melanoma cells
injected into nude mice do not become metastatic. All these
results suggest that SEMA3F could inhibit endothelial cell
invasion and/or tumor cell migration.
Many recent studies have focused on the semaphorin

receptors neuropilins that were found to play a pivotal role in
angiogenesis. Binding experiments revealed that in addition
to binding most class 3 semaphorins, neuropilin-1 is a
receptor for VEGF-A (the VEGF165 but not the VEGF121
isoform), VEGF-B, VEGF-E and placental-derived growth
factor-2 (see Bielenberg et al 44 for references). Neuropilin-1
is expressed by tumor cells and endothelial cells, where it is a
coreceptor for VEGFR-2 mediating VEGF function in angio-
genesis.47,48 Interestingly, Sema3A binding to neuropilin-1
blocks the migration of endothelial cells.49 However, several
class 3 semaphorins, including Sema3A are also expressed
by endothelial cells50 and could have an autocrine action.
Accordingly, Sema3A seems to exert a permissive role on
angiogenesis by inhibiting integrins-mediated adhesion of
endothelial cells allowing their deadhesion.50 The analysis of
neuropilin-1 knockout mice has confirmed that neuropilin-1/
VEGF interaction is required for normal development of the
vasculature.51 A soluble neuropilin-1 isoform was identified
and found to have robust antitumor activity.52 Recently, two
other soluble forms of neuropilin-1, sIIINRP1 and sIVNRP1,
generated by alternative splicing, were discovered and both
are expressed in human cancerous tissue.53 These soluble
neuropilins also bind VEGF165 and sema3A. Likewise,
neuropilin-2 is a receptor for VEGF165, VEGF145 and
placental-derived growth factor-2.54

The analysis of neuropilin expression in tumors and tumor
cell lines showed that there is a differential expression of
neuropilin-1 in two rat prostate carcinoma cell lines (AT2.1
and AT3.1), which have a differential motility in Boyden
chambers. AT3.1 cells are more motile and express higher
level of neuropilin-1 than AT2.1 cells. Upon transfection with
neuropilin-1, AT2.1 cells increase their level of migration in
Boyden chamber. They also form larger tumors when grafted

in rats, possibly through an enhancement of angiogenesis
involving VEGF signaling. Likewise, in glioblastoma, neuro-
pilin-1 expression is increased in endothelial cells and
neoplastic astrocytes.55 A possible role for Sema3A, in
neuropilin-1 tumor activity has been recently investigated.56

This showed that VEGF binding to Neuropilin-1 is required for
the survival of breast carcinoma cells. Those cells also
express SEMA3A (and plexin-A1, a neuropilin-1 coreceptor)
and lowering SEMA3A expression stimulates their migration.
Likewise, SEMA3A expression is decreased in mesothelio-
ma.57 In these cells, SEMA3A expression is transcriptionally
induced by VEGF, through a p38 MAPK (microtubule
associated protein kinase)-dependent pathway. As for SE-
MA3B, it is thought that a deregulation of the VEGF :SEMA3A
ratio occurs in tumor cells, increasing their invasive potential.
Overall, these experiments suggest that neuropilin-1 antago-
nists could be used to block tumor growth. These antagonists
could be soluble neuropilin-1 recombinant proteins that could
sequester VEGF, or Sema3A protein or peptides that could
block tumor progression and endothelial cell migration. Some
peptides able to mimick sema3A proapoptotic activity on
cultured neurons have been identified,58 but their activity on
cancer cell lines or tumors has not been tested so far. Other
possible therapeutic agents are sIIINRP1 and sIVNRP1 that
can block breast cancer cell migration.53

Although the majority of semaphorins are membrane-
bound, their function in normal and pathological conditions
remains largely unknown. Their receptors have also started to
be identified and these studies suggest that they might be
different in the nervous system and in other tissues, in
particular in the immune system.
Class 4 semaphorins, the largest subclass with at least

seven members, were shown to bind to type B plexins. In
transfected cells, Sema4D binds to plexin-B1 leading to the
small GTPases Rac1 and RhoA signaling pathway.59,60

Plexin-B1, -B2 and -B3 can also form receptor complexes
with Met and Ron.61,62 It was shown that SEMA4D fixation on
plexin-B1 can trigger invasive response of NIH3T3 cells in
vitro by activating MET and Ron.61,62 Moreover, plexin-B1 is
overexpressed, constitutively phosphorylated and associated
with MET in liver, colon, gastric and pancreas carcinoma cell
lines.62 Interestingly, plexin-B1 overexpression is sufficient to
activate MET. Type B plexins could thus have an important
role in the regulation of tumor invasion through their
interaction with tyrosine kinase receptors such as MET and
Ron. Accordingly, in the nervous system, plexin-B1 and
plexin-B2 are highly expressed in regions of intense cell
proliferation and migration (see Worzfeld et al63 and AC
unpublished data).
Several class 4 semaphorins, such as Sema4A and

Sema4D/CD100, are also involved in immune response.64

In the immune system, it was proposed that plexin-B1 is also a
functional receptor for Sema4D,65 but most data show that
Sema4D major receptor is CD72, a member of the C-type
lectin family.64 In the immune system, Sema4A receptor is a
member of the T cell, Ig and mucin domain proteins (TIM)
family, Tim-2,64 and Tim-2 cytoplasmic region contains a
consensus tyrosine phosphorylation site that is phosphory-
lated upon Sema4A binding. The receptors for other class 4
semaphorins are unknown. Despite their number and wide
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distribution, the expression and function of class 4 semaphor-
ins in cancer is largely unknown. SEMA4D/CD100 is
expressed on activated B and T lymphocytes and at high
level in lymphoid andmyeloid leukemia cells lines.66 SEMA4D
is also expressed in T-cell non-Hodgkin’s lymphoma and a
subset of B-cell non-Hodgkin’s lymphoma. B-cell chronic
lymphocytic leukemia is characterized by the expansion of
CD5þ B lymphocytes and it was suggested that this could
involve a signal delivered by T cells to the malignant B cells.
Normal and malignant B cells express CD100/SEMA4D while
its receptor plexin-B1 is expressed by activated T lympho-
cytes. Thus, CD100/plexin-B1 interaction could activate a
survival or proliferation signal in CD5þ B cells that may favor
the expansion of leukemic clones.65

In addition, it was shown that Sema4D promotes angiogen-
esis through Plexin-B1. Plexin-B1 is expressed in human
umbilical vein endothelial cell (HUVEC) and porcin aortic
endothelial (PAE) endothelial cells. Sema4D potently induced
chemotaxis and tubulogenesis in PAE endothelial cells and
enhanced blood vessel formation in mice. Interestingly, the
angiogenic responses provoked by Sema4D do not seem to
require MET activation.67 It is still unknown if Sema4D is
implicated in tumor angiogenesis.
Class 5 semaphorins have four known members that all

contains thrombospondin repeats in their extracellular do-
main.68 In the nervous system, Sema5A is expressed by
oligodendrocytes and inhibits axonal growth.69 During devel-
opment Sema5A is bifunctional, both attractive and repulsive,
for some axons.70 It was shown that in transfected cells,
Sema5A binds to plexin-B371 but the physiological relevance
of this interaction is unclear. However, more recently,
Sema5A activity on neurons was shown to require chondroitin
sulfate proteoglycans and heparan sulfate proteoglycans.70

InDrosophila, neoplastic growth of the brain can be induced
by inactivation of the lethal giant larvae l(2)gl gene. Moreover,
upon transplantation, l(2)gl tumor cells invade and metasta-
size to distant organs.68 A genetic screen for suppressors of
the l(2)gl phenotype lead to the identification of Sema5C
(tumor growth is blocked in the absence of sema5C). There
are at least three class 5 semaphorins in human SEMA5A,
SEMA5B and SEMA5D.68 Antibody staining showed that
SEMA5A and SEMA5D are expressed in human melanoma
cells (A2058) and SEMA5D in ovarian cancer cells. Likewise,
SEMA5A is overexpressed in uterine leiomyomata72 and
SEMA5B in human renal cell carcinoma.73

Class 6 semaphorins are closely related to insect class 1
transmembrane semaphorins. Recent studies in chick em-
bryos have shown that Sema6D is a ligand for plexin-A1 and
that their interaction is important for mediating the expansion
of the cardiac primordium.74 However, at later stages of heart
development plexin-A1 acts as a ligand and Sema6D as its
receptor.25 Upon plexin-A1 binding Abl kinase is recruited to
the cytoplasmic tail of Sema6D and activated, resulting in
phosphorylation of enabled and dissociation from Sema6D.25

This is the first direct evidence of bi-directional signaling in this
system and of a role for semaphorins as receptors. Other
transmembrane semaphorins were also suggested to act as
receptors for instance Sema1a and Sema4D, in Drosophila
embryo and in immune cells respectively.75,76 Other class 6
semaphorins are able to inhibit axonal growth in dissociated

neuronal culture77–79 but their receptors are still unknown.
There are several isoforms of SEMA6A and SEMA6B
generated by alternative splicing.80 One isoform of SEMA6B
is downregulated in two human glioblastoma cell lines upon
treatment with retinoids. This effect appears to require
peroxisome proliferator activated receptors (PPARs81) that
are transcription factors belonging to the nuclear hormone
receptor superfamily and can associate with retinoic acid
receptors. These data suggest that SEMA6B may play a role
in tumor progression. Last, SEMA6A was mapped to 5q21–
22, which is known to be deleted in certain forms of lung
cancer.82 SEMA7A, the only known class 7 semaphorin, is
bound to the plasma membrane by a glycosyl phosphate
inositol (GPI) anchor.83 SEMA7a (also known as CD108 in the
immune system) is a close homologue of the alcelaphine
herpes virus (AHV) semaphorin or AHVsema. Both were
found to bind to plexin-C1.20,84 However, recent data suggest
that in the nervous system integrins and in particular those
containing the b1 subunit, are functional receptors for
Sema7A.85 A possible function of SEMA7A in cancer is
unknown.

The Slits and Robos

The SLITS is the most recently discovered family of
chemotropic factors.86 Slit (d-Slit) was first identified in
Drosophila embryo. In fly, Slit is synthesized in the central
nervous system by midline glia cells and in the absence of slit,
longitudinal and commissural axons all converge and coa-
lesce at the midline.86–89 More recent work has demonstrated
that Slit is a chemorepulsive factor and a key regulator of
midline crossing and axonal fasciculation.90,91 Slit homolo-
gues have since been found in virtually all vertebrate species.
In mammals, three slit genes (slit1–slit3) have been cloned.86

All encode large ECM glycoproteins of about 200 kDa
(Figure 3), comprising, from their N terminus to their C
terminus, a long stretch of four-leucine rich repeats, seven to
nine EGF repeats, and a domain, named ALPS (agrin/laminin/
perlecan/slit),86,92 LNS93 or laminin G (LG) module.94 Slits are
proteolytically processed into a large N-terminal and shorter
C-terminal fragments in cell culture and in vivo.86 Slit cleavage
fragments have different cell association characteristics, with
the smaller C-terminal fragment being more diffusible and the
larger N-terminal and full-length fragments being more tightly
cell associated. Vertebrate Slits have also been shown to
repel developing axons and migrating neurons.95 Slit proteins
also repel migrating muscle precursors in fly embryos87 and
mesodermal cells in zebrafish embryos.96 However, in
rodents Slit2 can stimulate axonal elongation and branch
formation of sensory axons from the dorsal root ganglia97 and
attract migrating cells in Drosophila embryo.98

Roundabout (robo) proteins are the Slit receptors.87,99,100

Robo is an evolutionary conserved family of transmembrane
receptors.89,90,101,102 Robo proteins define a small subgroup
within the Ig superfamily (Figure 3) characterized by the
presence of five Ig-like followed by three fibronectin type III
(FNIII) repeats, a transmembrane portion and a long
cytoplasmic tail containing robo-specific motifs.103 So far,
three robo genes have been found in flies89,90,103 and
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mammals.99,100 Inmammals, CDO is another protein with 5Ig-
3FNIII,104 but its sequence is overall rather divergent from
those of the three Robo receptors, suggesting that CDO
probably does not belong to this family. Genetic and
biochemical evidence shows that Slits are ligands of the
robo1–robo3 receptors.89,90,103 A fourth putative robo gene,
called magic roundabout or robo4 was recently cloned and is
only expressed by endothelial cells.105 However, it lacks some
of the Ig domains and FNIII domains found in other robo
proteins and its capacity to bind slits is still debated.106,107

The N terminal region of slits contains a stretch of four
leucine-rich repeat domains (LRR) connected by disulfide
bonds. These and the Ig domains of robo are important for
signaling. Structure–function analysis in vertebrate and
Drosophila revealed that the LRRs of slits are required and
sufficient to mediate its repulsive activities in neurons.108–111

More recent studies have shown that in Drosophila all three
Robo receptors compete for a single active binding site in the
second LRR of Slit.108 Neither the FN3 domains nor Robo
dimerization are required for slit binding. The major robo1–3
binding site of slit is in the second of the four LRRs, is
evolutionary conserved and has a similar affinity for all robos.

However, slit affinity is higher when all LRRs are present,
probably due to its dimerization. On the receptor side, several
results suggest that the first two Ig domains of robos are
required for slit binding. First, the genetic deletion of Ig1 and
Ig2 results in abnormal lung development.112 Second,
antibodies against robo Ig1 inhibit tumor growth in mice113

and neurite outgrowth in vitro.114 Third, robo1 Ig1–2 are
important for slit binding and function in vitro.115

Although slits and robos were only recently discovered
there is mounting evidence suggesting that they are also
involved in cancers. As mentioned previously, deletions and
heterozygous loss on the short arm of chromosome 3 occur
frequently in lung cancer. In lung tumor cell lines, homozygous
deletions have been characterized in regions 3p12, 3p14 and
3p21, for instance in cell line U2020.116 Interestingly, ROBO1/
Dutt1 was mapped within the deletion and its promoter region
is hypermethylated in primary lung, renal and breast tumors.
So far, no somatic point mutation of ROBO1 (or of its ligands
slits) was reported in tumors. These data suggest that ROBO1
may be a tumor suppressor gene.112 A targeted mutation of
mouse robo1 was generated by deletion of exon 2, mimicking
a deletion that naturally occurs in human small cell lung
cancer cell line NIH-H219X, and resulted in the removal of
Robo1 Ig1. In total, 63% of Robo1�/� homozygous die in the
first 24 h because of respiratory failure due to abnormal lung
development. A few homozygous survive up to 1 year and
show bronchial hyperplasia, but no spontaneous tumor
formation was detected. Recently, the tumor susceptibility of
Robo1 heterozygous mice was analyzed.113 During their
second year of life, Robo1 heterozygotes develop lymphoma
and carcinomas, such as invasive lung carcinomas. In
malignant tumor samples from Robo1þ /� mice, the expres-
sion of Robo1 is undetectable. Moreover, the study of the
remaining allele showed that its promoter is hypermethylated.
Overall, these studies support a role for Robo1 as a tumor
suppressor gene, at least in the mouse.
Slit1, slit2 and slit3, the three known Robo ligands may also

be involved in tumorigenesis. First, SLIT2 is expressed in
many tumor cell lines117 such as human melanoma (A375),
bladder squamous carcinoma (SCaBER), neuroblastoma
(SK-N-SH), small cell lung cancer (NCI-H446), carcinoma of
urinary bladder (T24), colon adenocarcinoma (LoVo), breast
cancer (ZR-75-30), nasopharyngeal carcinoma (CNE), hepa-
tocellular carcinoma (SMMC-7721), salivary gland carcinoma
(Acc), rhabdomyosarcoma (A673) and primary tumors (mel-
anoma, invasive breast carcinoma, colorectal carcinoma,
etc.). Moreover, there appears to be a gradient of slit2
expression in primary tumors with highest concentration at the
center.
SLIT1–3 expression is upregulated in prostate tumors,118

but decreased in breast and lung cancer cell lines and tumors
and in gliomas.119,120 SLIT2 is mapped to 4p15.2, a region
associated with frequent LOH in many tumors. Accordingly,
the inactivation of SLIT2 in tumors was shown to be epigenetic
and caused by the hypermethylation of the promoter
region.119,120 Very recently, a similar methylation of the
promoter region of SLIT1 (1q23.3–q24) was detected in
glioma tumor cell lines.121 This study also showed that SLIT3
(5q35–34) promoter is frequently hypermethylated in breast,
lung, colorectal and glioma tumor cell lines and in primary

4

Cystein knot

ALPS

Cleavage site

Slit

Cytoplasmic domain

Robo

2

3

1

4

Immunoglobulin like domain

Fibronectin type III domain

Leucine-rich repeat

EGF repeat

Figure 3 Slits and their receptors. Slit are large ECM glycoproteins comprising,
from their N terminus to their C terminus, a long stretch of four leucine rich
repeats, seven to nine EGF repeats, and an LG module. Slits are proteolytically
processed into a large N-terminal and shorter C-terminal fragments. Roundabout
(robo) are slit receptors and define a small subgroup within the immunoglobulin
superfamily characterized by the presence of five Ig-like followed by three
fibronectin type III (FNIII) repeats, a transmembrane portion and a long
cytoplasmic tail containing robo-specific motifs
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breast tumors and gliomas. The observation that exogenous
slit2 suppresses colony growth in breast cancer cell lines119

supports a possible tumor suppressor function of SLIT2.
However, in tumors that express high level of SLIT2,
its function is likely to be different. Many studies suggest that
slit2 and its receptors have a potent angiogenic activity.
Robo1 is expressed on HUVECs and their migration is
increased by slit2 in Boyden Chamber assay.117 This
chemotactic activity of slit2 is dose dependent, requires
phosphatidylinositol-3 kinase (PI-3K) activation and can be
inhibited by recombinant ectodomain (RoboN). In vivo, both
RoboN or antibodies against the first Ig domain of Robo1
reduce tumor microvessel densities and tumor size while
exogenous slit2 has a opposite proangiogenic activity.117

However, the expression of Robo proteins by endothelial cells
in normal or metastatic tissue has not been reported yet and
slit1/slit2 knockouts have an apparent normal vasculature.122

Therefore, the physiological relevance of these results is still
unclear. Slits might also have other function in metastatic
cells. Tumor cells often migrate to distant organs leading to
secondary tumor formation and chemokines play a role in this
process. Recently, slit2 was shown to be a potent inhibitor of
stromal-derived factor (SDF)-1 induced leukocyte chemo-
taxis.123 This effect requires the interaction of CXCR4 with
Robo1 that are both expressed by leukocytes. Breast cancer
cells and human melanoma also express CXCR4, ROBO1
and ROBO2 and chemokines such as CXCL12 stimulate the
migration of cancer cells.124 It has been shown that slit inhibits
CXCL12/CXCR4-induced breast cancer cell (DU4475)
chemotaxis, chemoinvasion and adhesion. Slit inhibits
CXCL12-induced phosphorylation of the focal adhesion
component FAK and RAFTK/Pyk2 and paxillin. It also inhibits
CXCL12-induced Src kinase and PI3-kinase activities,
p44/42 MAP kinase and activity of the matrix metalloprotei-
nase MMP-2 and MMP-9 two proteolytic enzymes that play a
role in tumor invasion through degradation of the extracellular
matrix.124–126

Netrins and their Receptors

Although the existence of chemoattractive factors for growing
axons was long suspected,127 the first direct experimental
evidence for their existence was only obtained in
1986.128.Soon after, it was shown that in vertebrates, the
ventral midline of the developing CNS, also called the floor
plate, secretes some attractants for spinal cord commissural
axons.129 The biochemical purification of this attractant led to
the identification of netrin-1, a laminin related protein,130

whose function in regulating axon guidance at the midline of
the nervous system is conserved in evolution.3 There are at
least three netrin genes in mammals (netrin-1, netrin-3/
NTN2L and netrin-4131–134). Netrin-1 can attract several
classes of axons throughout the developing nervous system
but also acts as a repulsive factor for some axons.135 In
addition, netrin-1 controls neuronal migration in the develop-
ing and adult brain136 and the migration of pancreatic
progenitors,137 neural crest cells,138 oligodendrocyte progeni-
tors139,140 and endothelial cells (see below). In the adult
mouse brain, netrin-1 is expressed by some neurons and

myelinating oligodendrocytes.141 In neurons, netrin-1 has
several known receptors (Figure 4), Deleted in colorectal
cancer (DCC), UNC5A, UNC5B, UNC5C and UNC5D142,143

and the adenosine receptor A2b.17,144,145 (see Patel and Van
Vactor146 for a review). In neurons, DCC was shown to
mediate the attractive activity of netrin-1, in association with
A2b.144,145 UNC5s seem required for netrin-1 repulsive
activity, at least in vitro147–149 and this might also require
interaction with DCC.140,150 However, in C. elegans and
Drosophila embryo150 UNC5 could signal independently of
DCC. The function of UNC5/netrin-1 interaction in vertebrate
development in vivo is still unknown.
Netrin also binds to slit2132 and to neogenin, a DCC-related

receptor.151 (However, recent studies suggest that, at least in
the nervous system, neogenin is a receptor for a GPI-linked
protein named RGM (repulsive guidance protein152,153). Last,
in fetal pancreatic epithelial cells, netrin function appears to be
mediated by a6b4 integrins.137 All these receptors are

Immunoglobulin like domain

Thrombospondin domain

Fibronectin type III domain

Laminin N-terminal domain (VI)

Laminin EGF-like domain (III-V)

Netrin C terminal domain

Netrin-1

DCC

UNC5
A2b

Figure 4 Netrin-1 and its receptors. Netrin-1 is a laminin related protein,
containing a laminin N-terminal domain, two laminin EGF-like domains and a
netrin C terminal domain. Several transmembrane netrin-1 receptors are known.
Deleted in Colorectal Cancer (DCC) contains six Ig-like and three fibronectin type
III (FNIII) repeats. UNC5A–UNC5D are composed of two Ig-like and two
thrombospondin domains. Netrin also binds the adenosine receptor A2b, a seven
membrane domain receptor
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expressed in many developing and adult tissues in normal
condition (see Hinck4 for a review).
DCC was first characterized as a gene frequently deleted

in colorectal cancers.154 DCC expression is also down-
regulated in prostate tumors,118 human gastric carcinoma155

endometrial cancer cell lines156 among others (for a recent
review, see Arakawa157). DCC is at 18q21.2, a locus of
chromosome arm 18q associated with frequent LOH in
gastrointestinal cancers, suggesting that DCC is a tumor
suppressor gene. Likewise, the expression of UNC5 genes is
frequently downregulated in many primary tumors158 such as
colorectal tumors, kidney tumors and lung tumors in associa-
tion with significant LOH.
One promising model suggests that UNC5 and DCC

function in tumorigenesis is related to apoptosis. All these
receptors were demonstrated to be dependence receptors
(see Bredesen this issue): In the absence of their ligand
netrin-1, their cytoplamic domain is cleaved by caspases and
massive cell death occurs when they are overexpressed in
cultured cells. Moreover, there is a death domain at the C-
terminus end of UNC5 proteins. The exact mechanism by
which DCC and UNC5 receptors trigger apoptosis is still
largely unknown, but in the case of UNC5, a p53-dependent
pathway may be involved (see Arakawa, this issue).
It was proposed that DCC and UNC5s act as tumor

suppressors only when their ligand netrin-1 is not present.
According to this model, the normal function of DCC
and UNC5s could be to induce the death of tumor cells that
have migrated away from their normal location, in territories
where the ligand netrin-1 is absent. Therefore, in tumor
cells, the lack of functional DCC or/and UNC5 would make the
tumor cells resistant to apoptosis.159 Likewise, an excess
or abnormal expression of netrin-1 would protect tumor cells
still expressing DCC and UNC5 from death. This also
suggests that netrin-1 function in normal tissues would be to
interfere with DCC and UNC5s-dependent apoptosis. In
support of this model, it has recently been shown that
transgenic mice that overexpress netrin-1 in the intestine
develop spontaneous intestinal tumors.160 However, an
overexpression of netrin in or around human tumors has not
been reported yet. As for semaphorins and slits, another
possible function of netrins in cancer could be to regulate
angiogenesis. It has just been shown that endothelial cells
express UNC5B and A2b receptors and respond to netrin-
1161,162 and vascular defects were detected in UNC5B
knockouts. The exact mechanism of action of Netrin-1 in
endothelial cells is still debated as it was shown to inhibit162 or
stimulate HUVECs migration.161

Conclusions

Overall these data suggest that axon guidance molecules of
the semaphorin, slit and netrin families and their receptors
play important roles in tumorigenesis in many tissues and
several possible functions and common properties are
emerging (Table 1).
The development and growth of tumors require the

simultaneous formation and sprouting of new blood vessels
from pre-existing capillaries and veins.163 Surprisingly, many

of these novel axon guidance molecules are angiogenic
factors. Blood vessels that irrigate tumors were shown to
express Robo1, neuropilin-1, plexins-B1 and -D1 andUNC5B.
In the tumors, some axon guidance proteins such as netrin-1
and slit2 are upregulated and may directly increase angiogen-
esis upon binding their receptors on endothelial cells. Other
axon guidance molecules, such as Sema3E, Sema3A and
Sema3C, may act as inhibitors of angiogenesis in normal
condition for instance by interfering with VEGF function. Their
downregulation in some tumors may result in a stimulation of
blood vessel development.
Many secreted axon guidance proteins such as netrin-1,

Sema3B and Sema3A also play a role in apoptosis. In this
case, their normal function could be to kill premalignant cells
to block their migration and proliferation. The downregulation
of their expression in tumors and/or the upregulation of the
expression of their receptors could allow somemalignant cells
to survive, proliferate and migrate (Table 1).
Therefore, for therapeutic use it will be important to develop

reagents that can either mimick the activity of secreted
semaphorins such as Sema3A, or interfere with slit or netrin
binding to their receptors. Such molecules have already been
successfully used on developing neurons164,165 but still have
to be tested on tumors. Moreover, the 3D-structure of several
of these axon guidance proteins, in particular semaphorins
and neuropilins, have been recently solved, which should help
designing new molecules.11 Likewise, the signaling cascades
activated by many axon guidance proteins have started to be
identified in neurons2,8 and they may be similar in tumors.
Other promising studies have shown that it is possible to
switch the activity of netrin-1, slits and sema3A from attractive
to repulsive, or vice versa, simply by modulating the
intracytoplasmic concentration of molecules such as cyclic
nucleotides or calcium.166 It will be important to determine if
the same applies to tumor cells. As axon guidance molecules
have multiple functions in different cells, it may be difficult to
develop tumor specific therapeutic agents. Two examples are
slit2 and Sema3A that in addition to their role in angiogenesis
and neuronal development are very potent inhibitors of
dendritic cell activation and of the immune response.167,168

However, it is not because tumor cells express some axon
guidance proteins that their function in these cells is identical
and it would probably be a mistake to directly apply models
based on neurons to tumor cell biology. For instance, the
semaphorin receptors appear to be distinct in the immune
system and nervous system. In the developing heart, at least
one semaphorin acts as a receptor. Robo proteins, plexins
and neuropilins may also have homophilic properties.114,169

Last, many of these receptors, such as DCC and UNC5149

DCC and Robo1,170 plexin-A4 and Robo2,171 have been
shown to interact in growth cones.
At this time, this research field is at the beginning, and most

studies on axon guidance proteins in tumors are still mostly
descriptive and sometimes contradictory.
Knockout mice for slit1–slit3, robo1–robo3, neuropilins,

plexin-A3, netrin-1, DCC, UNC5 are already available and
many others in those families are being generated. Some
important answers on the possible implication of axon
guidance proteins in tumorigenesis will probably come from
the analysis these knockout mice.

Axon guidance molecules in cancer
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Table 1 Possible function and expression of axon guidance molecules in cancer

Possible function in cancer Expression in cancer References

SEMA3A May inhibit angiogenesis and migration of
endothelial cells (through neuropilin-1 binding)

Downregulated in mesothelioma.
Expressed in breast carcinoma cells, lowering its
expression stimulates their migration.

15�18, 50,
56�57

SEMA3B May play a suppressive role in tumorigenesis,
through neuropilins binding to compete with
neuropilin-mediated VEGF signaling

Mapped to the 3p21.3 locus where there is a
frequent allele loss in many cancers.
Downregulated or mutated in lung cancer cells
and downregulated in ovarian adenocarcinoma
cells

35�41

SEMA3C Could control the vascularisation of the tumors
through Npn-1 binding. Promotes the survival of
cultured cerebellar granule cells

Overexpressed in human ovarian cancer cell
lines, lung cancer cell lines and glioma cell lines

13, 17�18,
26�28

SEMA3E Controls angiogenesis and vascular patterning
during development through plexin-D1 binding

Overexpressed in mouse mammary carcinoma
metastatic cell lines and metastatic human lung
adenocarcinoma cell lines

18, 23,
29�34

SEMA3F Inhibits angiogenesis, endothelial cell invasion
and/or tumor cell migration through Npn-2
binding. Inhibits attachment and spreading of
breast cancer cells (MCF7 cells) through
interaction with Npn-1

Mapped to the 3p21.3 locus where there is a
frequent allele loss in many cancers.
Downregulated in several cancer cell lines and
tumors. Overexpressed in migrating lung cancer
cells

17, 35�36,
42�46

Sema4D Trigger invasive response of NIH3T3 cells by
activating MET and Ron. Promotes
angiogenesis through plexin-B1

Highly expressed in lymphoid and myeloid
leukemia cells lines. Expressed in non-Hodgkin’s
lymphoma and in malignant B cells

20, 61�62,
65�67

SEMA5A Binds to plexin-B3, binds to CSPG and HSPG in
neurons

Expressed in human melanoma cells (A2058),
over expressed in uterine leiomyomata

68, 70�2

SEMA5B Expressed in human renal cell carcinoma 68, 73
Sema5C Blocks tumor growth in Drosophila 68
SEMA5D Expressed in human melanoma cells and in

ovarian cancer cells
68

SEMA6A Mapped to 5q21�22 deleted in lung cancer 82
SEMA6B Downregulated in human glioblastoma cell line

upon treatment with retinoids
81

Sema6D Binds to plexin-A1 to regulate cardiac cell
proliferation and migration

25

Plexin-A1 Is a coreceptor for Neuropilin-1, binds to
Sema6D

Expressed in breast carcinoma cells. Expressed
in glioma cell lines

20, 25, 27, 56

Plexin-A2 Is a coreceptor of Neuropilins Expressed in glioma cell lines 27
Plexin-B1-3 Form receptor complexes with MET and Ron 61�2
Plexin-B1 Plexin B1 overexpression activates MET. Binds

to Sema4D.
Overexpressed, constitutively phosphorylated
and associated with MET in liver, colon, gastric
and pancreas carcinoma cells. Expressed in
glioma cell lines

20, 27, 62

Neuropilin-1 Binds to class 3 semaphorins. Binds to VEGF-A
(VEGF165 but not VEGF 161), VEGF-B, VEGF-
E and PDGF-2 coreceptor with VEGFR-2 to
mediate VEGF function in angiogenesis

Upregulated in endothelial cells and neoplastic
astrocytes in glioblastoma.
Expressed in breast carcinoma cells.
Expressed (as soluble forms sIIINRP1 and
sIVNRP1) in human cancerous tissue (in glioma
cell lines and lung cancers)

44, 47�9,
51�53,
55�56

Neuropilin-2 Binds to class 3 semaphorins receptor for
VEGF165, VEGF145 and PDGF2

Expressed in glioma cell lines 17, 27, 54

SLIT1-3 Binds to ROBO1-3 Upregulated in prostate tumors, downregulated
in breast and lung cancer cell line and tumors
and gliomas

118�120

SLIT1 Inhibits CXCL12/CXCR4-induced breast cancer
cells (DU4475) chemotaxis

124

SLIT2 Suppresses colony growth in breast cancer cell
lines.
Possible angiogenic activity.
Attracts HUVECs

Expressed in human melanoma, bladder
squamous carcinoma, neuroblastoma, small-cell
lung cancer, carcinoma of urinary bladder, colon
adenocarcinoma (LoVo), breast cancer,
nasopharyngeal, hepatocellular and salivary
gland carcinoma, rhabdomyosarcoma and
primary tumors

117, 119

ROBO1 Binds to Slit1-3.
Reduces lymphoma and carcinoma
succeptibility. Possible angiogenic activity

Mapped in a 3p region deleted in lung cancer cell
line (U2020)

113, 117

Netrin-1 Binds to DCC, UNC5A-D, neogenin, slit2, A2b
Overexpression induces intestinal cancer
Implicated in neuronal migration

142�146,
160

DCC Netrin-1 receptor, controls apoptosis Downregulated in prostate tumors 118
UNC5 Netrin-1 receptor, controls apoptosis Downregulated in many primary cancer

(colorectal, kidney, and lung tumors)
158
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