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Abstract
Apoptosis can be mediated by mechanisms other than the
traditional caspase-mediated cleavage cascade. There is
growing recognition that alternative proteolytic enzymes such
as the lysosomal cathepsin proteases can initiate or propagate
proapoptotic signals, but it is currently unclear how cathepsins
achieve these actions. Recent in vitro evidence suggests that
cathepsins cleave the proapoptotic Bcl-2 family member Bid,
thereby activating it and allowing it to induce the mitochondrial
release of cytochrome c and subsequent apoptosis. We have
tested this hypothesis in vivo by breeding mice that lack
cathepsin inhibition (cystatin B-deficient mice) to Bid-deficient
mice, to determine whether the apoptosis caused by
cathepsins is dependent on Bid signaling. We found that
cathepsins are still able to promote apoptosis even in the
absence of Bid, indicating that these proteases mediate
apoptosis via a different pathway, or that some other molecule
can functionally substitute for Bid in this system.
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Introduction

Apoptotic cell death initiated by extrinsic or intrinsic signaling
mechanisms normally proceeds via a cascade of cleavage

events mediated by cysteine proteases called caspases. In
the extrinsic mode, membrane receptor signaling activates
upstream initiator caspases, such as caspase-8. In some
cells, activated caspase-8 can then cleave the proapoptotic
Bcl-2 family member Bid. Activated Bid causes the release of
cytochrome c from mitochondria and subsequent activation of
downstream effector caspases, which carry out the final
cleavage steps responsible for the cellular disassembly
characteristic of apoptosis.1,2 In addition to the traditional
apoptotic process mediated by caspases, other proteases
such as the cathepsin cysteine proteases have been shown to
participate in apoptotic signaling.3–14 Although cathepsins
normally reside in the lysosome and carry out nonselective
degradation of proteins, a strong case was made for the
involvement of these proteases in apoptosis when it was
shown that agents that disrupted lysosomes and caused
cathepsins to redistribute to the cytoplasm inevitably resulted
in apoptosis.13,15–19 Similarly, cathepsin inhibitor treatment
blocked this apoptosis.11,14,18–22

Theoretically, the cathepsin proteases could induce apop-
tosis by a variety of different mechanisms.23 One possibility is
that cathepsins could nonspecifically degrade important
cellular proteins, thereby causing the cell to initiate apopto-
sis.24 Alternatively, cathepsins could cleave and activate
caspases or their downstream death effector substrates,25

thereby causing apoptosis. In support of the former mechan-
ism, it has been shown that cathepsin B can activate the
inflammatory caspases 1 and 11,17,26 and that cathepsin L
may activate caspase-3.20 The final possible mode of
cathepsin action places cathepsins far upstream in the
apoptotic cascade, cleaving the proapoptotic Bcl-2 family
member Bid to initiate mitochondrial release of cytochrome c.
This last hypothesis received in vitro confirmation when it was
shown that lysosomal extracts containing cathepsins were
able to cleave purified Bid in a physiologically relevant manner
that supported apoptosis.27 Cytosolic extracts prepared from
Bid-deficient mice resulted in significantly less apoptosis,
demonstrating the dependence of this pathway on Bid. In
support of this idea, a subsequent study showed that the
selective disruption of lysosomes resulted in Bid activation
and apoptosis;28 however, a very recent report using an in
vitro endothelial cell system failed to show a requirement for
Bid in cathepsin B-mediated apoptosis.14

We decided to test whether this intriguing Bid-mediated
cathepsin-signaling mechanism occurs in vivo. The in vivo
system we selected was a murine model of inherited epilepsy
in which cathepsins contribute to the initiation or propagation
of apoptosis when their endogenous cysteine protease
inhibitor, cystatin B, is missing.29 These cystatin B-deficient
mice experience widespread cerebellar granule cell apopto-
sis, ataxia, and seizures, just as do humans with Unverricht–
Lundborg progressive myoclonus epilepsy (EPM1) who lack
cystatin B.30 With the endogenous inhibitor cystatin B missing,
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cathepsins are free to participate in activating the apoptotic
pathway, and thereby contribute to the pathogenesis of EPM1
disease. To test whether cathepsins cause apoptosis by
cleaving Bid, our strategy was to compare the amount of
apoptosis and resultant phenotypes in these cystatin B-
deficient mice to the amount in cystatin B-deficient mice that
were also made to lack Bid. We hypothesized that if
cathepsins were signaling via Bid exclusively, the severity of
apoptosis and other phenotypes would be diminished in the
doubly deficient mice. Since the apoptosis, ataxia, and
seizure phenotypes were not decreased in the cystatin
B �/� Bid �/� mice that we produced, we concluded that
Bid is not required for cathepsin-mediated apoptotic signaling
in this particular in vivo model of cell death.

Methods

Mice

Cystatin B-deficient mice and Bid-deficient mice were created
as described previously.30–31 Mice heterozygous for cystatin
B were bred to Bid heterozygous mice, to create progeny that
were heterozygous for both deletions. These double hetero-
zygotes were bred to each other to produce mice doubly
deficient for both cystatin B and Bid in addition to all the
necessary controls (cystatin B þ /þ Bid þ /þ , cystatin B�/�
Bid þ /þ , cystatin B þ /þ Bid �/�). All mice were genotyped
by PCR as previously described.30,31

Western blots

Cerebella from four wild-type and four cystatin B �/�, age-
matched, 4-month-old mice were homogenized in 10 mM Tris-
HCl, pH 7.2, 142.5 mM KCl, 5 mM MgCl2, 1 mM EDTA, and
0.25% NP-40 with protease inhibitors.31 Equal amounts of
protein were size fractionated by SDS-PAGE, transferred,
and immunoblots were incubated with Cystatin B (Cat.# 2409-
8307, Biogenesis), Caspase-3 (Cat.# 9662, Cell Signaling) or
Bid (Cat.# AF860, R&D Systems) antibodies. Secondary
HRP-conjugated antibodies were added and Western
blots were developed using chemiluminescence detection
(Amersham).

Transferase-mediated dUTP nick-end labeling
analysis

Mice were transcardially perfused with 4% paraformaldehyde,
and brains were postfixed overnight before being paraffin
embedded and sectioned. The terminal deoxynucleotidyl
transferase-mediated dUTP nick-end labeling (TUNEL) assay
for apoptosis was performed according to the manufacturer’s
instructions for paraffin-embedded tissues (Cat.# G3250,
Promega). The number of fluorescently labeled apoptotic cells
was quantitated using Zeiss KS 300 image analysis software.
Bilateral samples of three low-magnification fields from each
brain hemisphere were imaged for a total of six fields per
mouse. The number of apoptotic cells was measured in 2-
month-old mice (n¼4), 4-month-old mice (n¼9), and 8-month-
old mice (n¼3–4) of each genotype. Unpaired, two-tailed

Student’s t-test was used to evaluate the differences between
genotypes.

Ataxia measurements

Mice, 2-month old (n¼4), 4-month-old (n¼9), and 8-month-old
(n¼3–4), of each genotype were tested for ataxia by using a
rotating-rod apparatus (Columbus Instruments) at both 0 and
2 rpm speeds. Mice were placed on the rod for a total of five
consecutive trials of 1 min duration each. Mice remaining on
the rod for 1 min received a perfect score. Unpaired, two-tailed
Student’s t-test was used to evaluate the differences between
genotypes.

A second ataxia measurement, the gait variability para-
digm,32,33 was also used to test 2-month-old mice (n¼4),
4-month-old mice (n¼9), and 8-month-old mice (n¼3–4) of
each genotype. After dipping the hind paws of mice in ink, the
mice were allowed to run from the entrance end of an
enclosed 60 cm long runway lined with paper to the exit end.
The variability of spacing between footsteps as marked by the
ink is an index of ataxia. The mean log variance of the distance
between hind paws for at least 10 successive steps was
calculated for each mouse, and averaged for each of the two
testing repetitions. An average mean log variance of greater
than one was taken as an indication of ataxia.

Cortical EEG and seizure measurements

Doubly deficient cystatin B �/� Bid �/� mice and singly
deficient cystatin B �/� mice were observed at different ages
for evidence of seizures. For electrocorticographic recordings,
silver-wire electrodes (0.00500 diameter) soldered to a micro-
miniature connector were implanted bilaterally into the
subdural space over the frontal and parietal cortex of
anesthetized mice, several days prior to recording. Cortical
activity and behavior were recorded using a digital video/
electroencephalograph (Stellate Systems) from 8–9-month-
old mutants and controls moving freely in the test cage for
prolonged periods (42 h) during a minimum of five sessions,
including overnight recordings.

Results

No Bid cleavage in cystatin B-deficient cerebella

It had been previously shown that cathepsin B is responsible
for a significant percentage of the cerebellar granule cell
apoptosis that results when its inhibitor cystatin B is absent in
mice.29 For this reason, we used the cystatin B-deficient
mouse system to determine if in vivo proapoptotic signaling by
cathepsins requires the presence of Bid to initiate or
propagate apoptosis. Our initial test of this proposed
mechanism was to compare amounts of Bid cleavage in
wild-type and cystatin B-deficient cerebella. We first con-
firmed the presence of cystatin B protein in wild-type but not
cystatin B knockout cerebellar protein homogenates by
Western blotting (Figure 1). Next, we established that the
cerebellar cell death that we had previously observed was
indeed apoptotic, by blotting for the cleaved form of caspase-
3. Lastly, we looked for the evidence of Bid cleavage in
cystatin B þ /þ and cystatin B �/� cerebellar homogenates.
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The inactive form of Bid is approximately 22 kDa, but upon
cleavage and activation, Bid is reduced to a 15 kDa piece. If
Bid is a major contributor to cathepsin-mediated apoptotic
signaling, we would expect to see the accumulation of the
15 kDa form of Bid in cystatin B �/� cerebella, and not in
cystatin B þ /þ mice where no apoptosis is observed.
Instead, we detected no Bid cleavage products nor any
disappearance of the full-length Bid with any of the anti-Bid
antisera that we tested (Figure 1), arguing against the
involvement of Bid in this system.

Production of cystatin B, Bid doubly deficient mice

To determine whether cathepsin-mediated apoptosis is
possible in the absence of Bid, we constructed cystatin
B/Bid double knockout mice. Removing Bid, the potential
signaling intermediate between cathepsins and caspases,
should decrease or abolish the phenotypes of cystatin

B-deficient mice if Bid is a critical component of cathepsin-
mediated apoptosis. The double mutants were generated in
two rounds of breeding, such that 1/16 of the progeny were
doubly deficient for cystatin B and Bid. Cystatin B�/�Bid �/�
mice were phenotypically normal at birth, and were born at the
expected Mendelian ratio.

Granule cell apoptosis is unchanged in cystatin B,
Bid doubly deficient mice

To assess whether removal of Bid from cystatin B-deficient
mice reduced the severity of the apoptosis phenotype, we
visualized the amount of cerebellar granule cell apoptosis in
brains from doubly deficient mouse lines at 2, 4, and 8 months
of age. As expected, there was little to no visible cerebellar
granule cell apoptosis in cystatin B þ /þ Bid þ /þ wild-type
mice at 2 months (Figure 2a), 4 months (Figure 2d), or 8
months of age (Figure 2g). Cystatin B �/� Bid þ /þ disease
mice displayed widespread granule cell apoptosis at 2 months
(Figure 2b), 4 months (Figure 2e), and 8 months of age
(Figure 2h), as previously reported. Cystatin B �/� Bid �/�
disease mice displayed equivalent granule cell apoptosis at
2 months (Figure 2c), 4 months (Figure 2f), and 8 months of
age (Figure 2i).

We quantitated the number of TUNEL-positive granule cells
for each of the genotypes at 2, 4, and 8 months of age
(Figure 2j). At 2 months of age, cystatin B �/� Bid þ /þ
disease mice had an average of 96 apoptotic granule cells
per field, whereas doubly deleted cystatin B�/�Bid �/�mice
had an average of 81 apoptotic granule cells per field. This
16% difference was not statistically significant (P¼0.412). At 4
months of age, the doubly deleted mice displayed a similar
small reduction in the number of apoptotic granule cells when
compared to cystatin B-deficient mice, but again this
difference was not statistically significant (P¼0.228). Cystatin
B �/� Bid þ /þ mice (8-month old) and cystatin B �/� Bid �/
� mice experienced nearly equivalent amounts of granule cell
apoptosis, with an average of 39 and 40 TUNEL-positive cells
per field, respectively (P¼0.963). Since the removal of Bid
from the cystatin B-deficient disease mice did not abolish
granule cell apoptosis, we conclude that Bid signaling alone is
dispensable for the cathepsin-mediated form of apoptosis
observed in this disease.

Ataxia is unchanged in cystatin B, Bid doubly
deficient mice

Previously, we showed that aged cystatin B-deficient mice
experience ataxia, consisting of poor balance while moving,
and a lack of motor coordination.30 To determine whether Bid
signaling contributes to this phenotype in the absence of
cystatin B, we tested the cystatin B, Bid doubly deficient mice
described above for reduced ataxia. Wild-type cystatin
B þ /þ Bid þ /þ mice performed well on the rotorod ataxia
test at all ages, remaining on the 0 rpm rod (Figure 3a) or
2 rpm rod (Figure 3b) for each full 60 s trial. Cystatin B �/� Bid
þ /þ disease mice performed well at 2 and 4 months of age,
but by 8 months of age experienced ataxia, as evidenced by a
greatly decreased ability to stay on either the stationary or
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Figure 1 Lack of Bid cleavage in wild-type and cystatin B-deficient mouse
cerebella. Cerebellar total homogenates from 4-month-old wild-type (WT) and
cystatin B-deficient (KO) mice were resolved on SDS-PAGE gels. Equal loading
of protein samples is shown by Coomassie blue staining in the top panel.
Western blotting for cystatin B demonstrates that WT cerebella contain cystatin B
protein, whereas cystatin B KO cerebella do not. A duplicate membrane blotted
for caspase-3 shows evidence for apoptosis in the cystatin B �/� cerebella:
increased accumulation of the capase-3 active 17 kDa fragment in cystatin B KO
cerebella as compared with WT cerebella. Another duplicate membrane blotted
for Bid shows the existence of the uncleaved 22 kDa form of Bid, but no 15 kDa
active form in WT or cystatin B-deficient cerebella
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rotating rod during the trial. The doubly deficient cystatin
B �/� Bid �/� mice had nearly normal capability at 2 and 4
months of age, but by 8 months of age were compromised to a
similar degree as were the cystatin B �/� Bid þ /þ mice.
Although cystatin B �/� Bid �/� mice showed a slight trend
towards better rotorod performance than the cystatin B �/�
Bid þ /þ mice, individual doubly deleted mice had variable
performances, and the difference between genotypes did not
reach statistical significance at either 0 or 2 rpm (P¼0.051 and
0.092, respectively). Similar findings were obtained with the
gait variability test to measure ataxia in these mice (Figure 3c).
Specifically, cystatin B �/� Bid þ /þ mice and cystatin B �/�
Bid �/� mice displayed ataxic symptoms only at 8 months of
age, and the removal of Bid from cystatin B-deficient mice did
not reduce the severity of ataxia. Thus, Bid signaling does not

appear to be an important pathway responsible for the ataxia
phenotype in cystatin B-deficient mice or humans.

Seizures measured in cystatin B, Bid doubly
deficient mice

During sleep, cystatin B �/� mice experience frequent
seizures that consist of ear, vibrissae, head, tail, and whole-
body myoclonus. Electroencephalograph recordings (EEG)
from these mice show stereotypical synchronous spikes
consistent with myoclonic seizures.30 To determine whether
the removal of Bid from cystatin B �/� mice abolished the
cystatin B �/� seizure phenotype, we first made visual
observations of double knockout mice. Multiple doubly
deficient mice had seizures upon falling asleep. To better
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Role of Bid in cathepsin-mediated apoptosis
MK Houseweart et al

1332

Cell Death and Differentiation



characterize the seizure type and severity, EEG recordings
were performed on doubly deficient mice, and compared to
recordings from singly deficient cystatin B �/� disease mice.
Cystatin B �/� Bid �/� (Figure 4a) and cystatin B �/�
Bid þ /þ mice (Figure 4b) displayed frequent spontaneous
axial myoclonic jerks associated with a bilateral 150–300 ms
electrographic discharge, typically at the rate of 10–15 h.
These solitary myoclonias always involved the head and neck,
and usually the entire body. Myoclonus occurred both during
wakefulness and sleep, and often the discharge was sufficient
to awaken the animal. The baseline cortical activity of both
doubly (Figure 4c) and singly (Figure 4d) deficient mice
showed periods of normal, low-amplitude desynchronized
EEG, and, at times, interictal discharges not associated with
myoclonic jerks were present, as were bilateral electrographic
seizure discharges. During these seizures, which could be
observed both during sleep and wakeful behavior, the mouse
showed no clonic or tonic movements, and was able to
explore and engage in feeding behavior. Since the removal of
Bid from cystatin B �/� mice did not measurably alter the
seizure or myoclonia phenotypes, we conclude that Bid is not
required for the manifestation of these neuronal excitability
phenotypes.

Eye phenotype present in cystatin B, Bid doubly
deficient mice

In our original characterization of the singly deficient cystatin B
�/� mice, we noted that approximately 35% of these mice

experienced a mild eye phenotype consisting of corneal
lesions and or serous exudate in one or both eyes.30 To
determine whether the removal of Bid influenced the severity
of these eye lesions, we counted the number of 8-month-old
doubly deficient mice with this eye phenotype. We found that
half of the cystatin B �/� Bid þ /þ mice experienced the eye
phenotype, whereas two-thirds of the cystatin B �/� Bid �/�
mice did (Table 1). While the small number of 8-month-old
animals available for this measurement precludes any firm
conclusions, the fact that there was no decrease in the
incidence of the eye phenotype upon Bid removal indicates
that Bid was not required for the emergence of this phenotype.

Discussion

We tested whether the proapoptotic signaling by lysosomal
cathepsin proteases proceeds via the proapoptotic Bcl-2
family member Bid in vivo. To do this, we used a murine model
of human epilepsy in which cathepsins are not inhibited due to
a systemic lack of their endogenous inhibitor, cystatin B. We
found no evidence for Bid cleavage/activation in cystatin
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Mouse genotype Number of mice with
phenotype/total

Cystatin B �/� Bid +/+ 2/4 (50%)
Cystatin B �/� Bid �/� 2/3 (66%)
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B-deficient mouse cerebella undergoing apoptosis. We also
compared the severity of apoptosis and other phenotypes in
these cystatin B-deficient mice to that of cystatin B-deficient
mice engineered to also lack Bid. We showed that the amount
of cerebellar granule cell apoptosis in cystatin B-deficient mice
did not change when Bid was removed. Similarly, these
cystatin B �/� Bid �/� mice experienced ataxia, seizure, and
eye phenotypes equivalent to those observed in singly
deficient cystatin B �/� mice. These findings indicate that
cathepsins can use mechanisms other than Bid cleavage to
initiate or propagate apoptosis in this system. Alternatively,
another molecule may partially substitute for Bid when it is
missing. This simple explanation seems plausible, as the
original in vitro experiments on which the current study is
based also provided evidence for the existence of another
compensatory factor by showing reduced, but not abolished,
ability of Bid-deficient extracts to promote apoptosis.27

If cathepsins do not signal apoptosis exclusively via Bid,
then what other molecule is downstream for the cathepsins to
cleave? The likely candidates are other Bcl-2 family members
that could compensate for the proapoptotic function of Bid
when Bid is removed. One possibility is that cathepsins cleave
the antiapoptotic Bcl-2 family members, thereby destroying
their antiapoptotic function. For example, the Bcl-2 family
members Bcl-2 and Bcl-XL can be cleaved to convert them
from their normal antiapoptotic state to a proapoptotic
state.34,35 Alternatively, cathepsins could simply degrade
the antiapoptotic Bcl-2 family members with similar conse-
quences. It is also possible that cathepsins mediate apoptosis
through cleavage of some of the other proapoptotic members
of the Bcl-2 family (Bax, Bak, Bok, Bim, Bik, Bad, Hrk, and
Noxa) that normally act to sense cellular damage and initiate
apoptosis. Although many of these do not appear to require
proteolysis for activation,36 it cannot be excluded that one or
two of the family members require cleavage to become active,
as is the case for Bid.

Given the compelling in vitro data showing that Bid is the
predominant signaling intermediate between lysosomal pro-
teases and apoptosis induction,27,28 our current in vivo results
were unexpected, and prompted us to consider other
interpretations of the original data from Stoka and colleagues.
For example, because their in vitro study used total lysosomal
extracts instead of purified individual lysosomal cathepsins for
the Bid cleavage assays, it seems possible that other
unidentified lysosomal components besides cathepsins could
have been responsible for the cleavage and activation of Bid.
Namely, there are more than 50 hydrolytic enzymes present in
lysosomes,37 and some are already implicated in apopto-
sis.38,39 To help resolve whether cathepsins are in fact the
lysosomal components that cause Bid cleavage in vitro,
additional follow-up studies aimed at identifying which
cathepsins can cleave Bid are currently underway. Prelimin-
ary evidence shows that cathepsins B, L, H, S, and K can
mediate this cleavage event, whereas cathepsins X and C
cannot (Boris Turk, unpublished data). If this holds true, other
reasons may explain why our in vivo system did not replicate
these in vitro results. One likely explanation is that, while
cathepsins are physically capable of cleaving Bid in vitro, this
phenomenon may not occur in in vivo settings due to
inefficient cleavage or insufficient quantities of cytoplasmic

cathepsins. Alternatively, it is possible that cathepsin-
mediated Bid cleavage occurs only in certain cell types, and
that a cofactor or particular condition must be present for Bid
cleavage to occur. This is in agreement with the finding that
apoptosis induced by lysosomal disruption in HeLa cells
proceeds through cathepsin-mediated Bid cleavage (Boris
Turk, unpublished) and cathepsin-mediated Bid cleavage
occurs readily in extracts made from liver cells,27 but Bid is not
required for cathepsin-mediated apoptosis in our granule cell
system. In support of this idea, it is well known that Bid is
required in only a subset of cell types and in cell death caused
by a certain subset of stimuli.40 The fact that apoptotic cell
death in Bid-deficient mice occurs relatively normally and Bid-
deficient mice do not have the same severe phenotypes as do
knockouts of other members of the extrinsic signaling path-
way (such as caspase 8,41 Fadd,42,43 or Fas-deficient mice44)
also argues for the existence of a compensatory mechanism
or molecule in addition to Bid.

We believe that the apoptotic signals initiated or propagated
by cathepsins represent subtle but important aspects of the
apoptotic response. For example, the cell may use cathepsins
to sense moderate lysosomal damage or oxidative stress.
Alternatively, cathepsins may represent a backup apoptotic
mechanism or a way to amplify weak apoptotic signals when
caspases are inhibited. It is important to elucidate the
mechanism of this cathepsin-mediated apoptosis so that we
can start to determine how universal this process is and for
which cell types it is crucial. Besides showing that cathepsins
may utilize Bid signaling to different extents in in vivo versus in
vitro settings, we have demonstrated that cathepsins no
longer held in check by their inhibitor cystatin B find ways other
than Bid activation to induce apoptosis in humans and mice
with EPM1. We expect that future studies aimed at identifying
the downstream targets of cathepsin proteolysis will con-
tribute greatly to the understanding of EPM1 pathogenesis,
and may reconcile the long-standing questions surrounding
lysosomal cathepsin involvement in apoptosis.
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