
Caspase-dependent and -independent T-cell death
pathways in pathogenic simian immunodeficiency
virus infection: relationship to disease progression

D Arnoult1,4, F Petit1,4, JD Lelièvie1, D Lecossier2, A Hance2,
V Monceaux3, R Ho Tsong Fang3, B Huntrel3, JC Ameisen1 and
J Estaquiern,3
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Abstract
Studies of human immunodeficiency virus (HIV) and nonhuman
primate models of pathogenic and nonpathogenic simian
immunodeficiency virus (SIV) infections have suggested that
enhanced ex vivo CD4 T-cell death is a feature of pathogenic
infection in vivo. However, the relative contributions of the
extrinsic and intrinsic pathways to programmed T-cell death in
SIV infection have not been studied. We report here that the
spontaneous death rate of CD4þ T cells from pathogenic
SIVmac251-infected rhesusmacaques ex vivo is correlated with
CD4 T-cell depletion and plasma viral load in vivo. CD4þ T
cells from SIVmac251-infected macaques showed upregulation
of the death ligand (CD95L) and of the proapoptotic proteins
Bim and Bak, but not of Bax. Both CD4þ and CD8þ T cells
from SIVmac251-infected macaques underwent caspase-de-
pendent death following CD95 ligation. The spontaneous death
of CD4þ and CD8þ T cells was not prevented by a decoy
CD95 receptor or by a broad-spectrum caspase inhibitor (zVAD-
fmk), suggesting that this form of cell death is independent of
CD95/CD95L interaction and caspase activation. IL-2 and IL-15
prevented the spontaneous death of CD4þ and CD8þ T cells,
whereas IL-10 prevented only CD8 T-cell death and IL-7 had no
effect on T-cell death. Our results indicate that caspase-
dependent and caspase-independent pathways are involved in
the death of T cells in pathogenic SIVmac251-infected primates.
Cell Death and Differentiation (2003) 10, 1240–1252. doi:10.1038/
sj.cdd.4401289
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Introduction

HIV-1 infection leads to CD4 T-cell depletion associated with
high rates of viral turnover,1 preceded by a progressive loss of
T-cell-mediated immunity.2 T-cell apoptosis is thought to be
one of the mechanisms responsible for T-cell depletion during
HIV and SIV infections. Several studies have found that
uninfected CD4þ and CD8þ T cells from HIV-1-infected
individuals display abnormal levels of apoptosis, both in vitro
and in vivo. Furthermore, studies performed in primate
models of pathogenic and nonpathogenic HIV or SIV infection
have identified a correlation between the induction of an
increase in the rate of T-cell apoptosis in vitro and the
pathogenic nature of the retroviral infection in vivo.3,4 An
increase in CD4 T-cell apoptosis was observed only in models
leading to AIDS or similar syndromes: HIV-1-infected human
individuals, rhesus macaques infected with a pathogenic
strain of SIVmac, and chimpanzees infected with a patho-
genic strain of HIVLAV-1b. In contrast, an increase in CD8 T-
cell apoptosis was observed in both pathogenic and non-
pathogenic models of infection in primates. The increase in
the rate of T-cell apoptosis in HIV-infected human individuals
is associated with an increase in expression of the CD95
receptor and its ligand (CD95L), and an increase in the
sensitivity of T cells to apoptosis mediated by CD95 ligation,
using either agonistic CD95 monoclonal antibodies (mAb) or
recombinant CD95L.4 Other members of the TNF-receptor
ligand family (TRAIL, TNF-a) have also been implicated in the
increase in T-cell apoptosis seen in HIV-1-infected indivi-
duals.4,5 However, it is unclear whether the level of T-cell
apoptosis is correlated with either viral load or progression to
AIDS.6–8

Two pathways are known to be important in the transduc-
tion of death signals to the apoptotic machinery. The ‘extrinsic’
pathway involves death receptors and activation of the
caspase cascade.9,10 The ‘intrinsic’ pathway is death recep-
tor-independent. In the intrinsic pathway, multiple stimuli,
such as stress, drugs, and survival factor deprivation, induce a
cell death programme that may be caspase-dependent or -
independent. When involved in the cell death programme,
caspases are required only for induction of the nuclear
apoptotic phenotype.10,11 Stimuli activating the intrinsic path-
way converge on the mitochondrial sensor, inducing the
release of proapoptotic factors, leading to apoptosis.12,13

The apoptosis induced by HIV and SIV may involve
dysregulation of the intrinsic pathway. Members of the Bcl-2
protein family play a critical role in controlling the permeabi-
lisation of the outer mitochondrial membrane.12–14 Previous
studies of apoptosis in syncytia15,16 and cells productively
infected with HIV-117–19 have shown an increase in Bax levels
and a loss of mitochondrial membrane potential due to
mitochondrial permeabilisation. However, the overproduction
of Bax has not been clearly demonstrated during natural HIV
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infection and remains a matter of debate.20,21 Despite the
considerable effort directed at elucidating the mechanisms
responsible for apoptosis in HIV-1 infection in humans, very
little information has been obtained from primate models of
lentivirus infection and the available data principally concern
the acute phase.22–24 In particular, no study has addressed
the question of the relative contributions made by the extrinsic
and intrinsic pathways to programmed T-cell death during SIV
infection. In addition, no attempt has been made to evaluate
the correlation between disease progression and the prob-
ability of T cells undergoing apoptosis after CD95 ligation.
Moreover, the results obtained by Xu et al.25 are not
unequivocal as the mAbs used were inappropriate for primate
models.26

This study therefore had two main aims. First, we sought to
determine whether differences in the rates of T-cell apoptosis
in models of pathogenic and nonpathogenic infections in
primates could be accounted for by differences in the
expression of CD95 or its ligand (CD95L) and/or by
differences in signal transduction induced by CD95 ligation.
Second, we aimed to identify the main components of the
deathmachinery involved in progressive CD4 T-cell depletion.
We found that CD4þ and CD8þ T cells from macaques
infected with the pathogenic SIVmac251 strain were more
likely to undergo apoptosis following CD95 ligation, and that
this process involved a caspase-dependent pathway. How-
ever, we also demonstrated that the rate of spontaneous CD4
T-cell death in vitro has predictive value concerning the
likelihood of progression to AIDS, and that such cell death
occurs independent of CD95/CD95L interactions or caspase
activation. Both CD95-dependent and -independent cell death
programmes led to a loss of mitochondrial membrane
potential. This loss of membrane potential was not associated
with Bax upregulation, but was associatedwith upregulation of
the proapoptotic proteins Bak and Bim.

Results

Apoptosis in pathogenic SIV-infected macaques is
correlated with CD4T-cell depletion and viral load

At 1–3 years after infection with SIVmac251, rhesus
macaques develop a disease remarkably similar to AIDS in
HIV-1-infected humans. Infection with SIVmac251 led to a
significant depletion of CD4þ T cells (Figure 1a), whereas no
such depletion was observed in animals infected with a
SIVmac clone from which the nef gene had been depleted
(Dnef), which did not induce disease.27 An increase in the
proportion of activated circulating CD4þ and CD8þ T cells
(Figure 1b) and impairment of the proliferation of T cells
directed against HIV-2 antigens (Figure 1c) were also
observed in animals infected with SIVmac251, but not in
those infected with the Dnef virus.
Spontaneous T-cell death during an 18 h period of culture

was quantified by flow cytometry, for cells from uninfected
rhesus macaques (SIV–) and cells from animals infected with
the pathogenic SIVmac251 strain or the Dnef strain. The rate
of T-cell death was significantly higher in SIVmac251-infected
animals than in uninfected animals and animals infected with
the Dnef strain, although some variability was observed

(Figure 1d). The CD45RAþ and CDR45RA– subsets of
CD4þ and CD8þ T cells from pathogenic SIVmac251-
infected animals weremore likely to undergo apoptosis in vitro
than were other cells (Figure 1e). Two factors were identified
that contributed to variation between individual SIVmac251-
infected animals in terms of spontaneous T-cell death.
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Figure 1 Higher rates of T-cell death are associated with pathogenic SIV
infection and progressive CD4 T-cell depletion. (a) CD4/CD8 T-cell ratio of
uninfected macaques (SIV–), and macaques infected with the nef-deleted
SIVmac251 clone (nef–) or the SIVmac251 strain (SIVþ ). Each circle
represents the results from one individual. (b) Proportions of CD4þ and
CD8þ T cells expressing HLA-DR (’) and CD69 (&). Data are means7S.D.
of five uninfected macaques (SIV–), four macaques infected with the nef-deleted
SIVmac251 clone (nef–), and nine macaques infected with the SIVmac251 strain
(SIVþ ). (c) T-cell proliferation plotted against HIV-2 antigens (1 mg/ml). Data are
the mean7S.D. of four individual animals tested in each group. (d) T-cell death
in PBMC was determined by flow cytometry, using acridine orange nuclear stain.
Each circle represents the results from one individual. (e) Death of naive
(CD45RAþ ) and memory (CD45RA–) subsets of CD4þ (J) and CD8þ (K)
T cells. Each circle represents the results from one individual. (f) Correlation
between the death rates in vitro of PBMC, CD4þ and CD8þ , T cells from
macaques infected with the SIVmac251 strain and the in vivo percentages of
CD4þ T cells. Each circle represents the results from one individual. The
correlation coefficient (r2) was determined by linear regression. (g) Correlation
between the rate of cell death in vitro for CD4þ and CD8þ T cells from
macaques infected with the SIVmac251 strain and plasma viral load. Each circle
represents the results from one individual. The correlation coefficient (r2) was
determined by linear regression. Statistical significance was assessed using
Student’s t-test. (*Po0.05; ns: not significant)
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The percentage of PBMC, CD4þ , and CD8þ T cells that
died was negatively correlated with the percentage of
circulating CD4þ T cells (Figure 1f), but not with the
percentage of circulating CD8þ T cells (data not shown).
As in SIV infection, the proportion of HIV-infected individuals
with rates of spontaneous T-cell death higher than those
observed for T cells from uninfected individuals was inversely
related to total CD4 T-cell counts (data not shown). We also
observed that CD8þ T-cell counts fell dramatically whenCD4
T-cell numbers decreased in vivo at the onset of the AIDS-like
syndrome in SIVmac251-infected macaques (data not
shown). The proportion of purified CD8þ T cells dying ex
vivo was higher (3878%) than the proportion of PBMC that
died (2677%), suggesting that the presence of CD4þ T cells
favours CD8 T-cell survival. These observations suggest that
CD4þ T cells act as ‘feeder cells’ for CD8þ T cells and
highlight the importance of environmental factors in the
control of T-cell death. Our data also indicated that the rates
of CD4 and CD8 T-cell death were positively correlated with
plasma viral load (Figure 1g). Thus, our results indicate that
the death ex vivo of T cells from macaques infected with the
pathogenic SIVmac251 strain is correlated with the gradual
decline of CD4þ T-cell counts in vivo and rates of viral
replication – two major prognostic factors for progression to
AIDS.

Increase in susceptibility to CD95-mediated
apoptosis in macaques infected with pathogenic
SIV

We evaluated CD95 mRNA levels in freshly isolated PBMC
from macaques infected with SIVmac251 or Dnef virus and
from uninfected animals by quantitative RT-PCR; CD95
mRNA levels were similar in these three groups (Figure 2a).
We assessed CD95 expression on T cells by flow cytometry
with the DX2mAb. The proportion of CD4þ and CD8þ T
cells expressing CD95 did not differ significantly in the three
groups. However, the mean percentage of CD4þ (54711%)
and CD8þ T cells (7776%) from animals infected with
SIVmac251, which expressed CD95 was slightly higher than
that for control animals (CD4þ : 46711%; CD8þ : 69710%)
(Figure 2b). The proportion of CD4þ T cells expressing CD95
was higher for HIV-infected humans than for uninfected
individuals (69726 and 3378%, respectively). Furthermore,
the proportion of CD4þ T cells expressing CD95 in HIV-1-
infected chimpanzees did not differ significantly from that for
uninfected chimpanzees (27714 and 31714%, respec-
tively), and was in the same range as that for CD4þ T cells
from healthy humans (data not shown). A higher proportion of
CD8þ T cells from HIV-infected humans than from healthy
donors expressedCD95 (70720 and 28710%, respectively).
The proportion of chimpanzee CD8þ T cells expressing
CD95 was variable, but did not differ significantly between
HIV-infected and -uninfected animals (52715 and 39722%,
respectively; data not shown).
Not all T cells expressing CD95 undergo apoptosis

following stimulation by the cognate ligand.28–31 As the
antibodies classically used to assess CD95 sensitivity in
humans do not crossreact with macaque CD9524 (data not

shown), we used human recombinant soluble CD95L to
evaluate the likelihood of T cells undergoing apoptosis after
CD95 ligation. The incubation of CD4þ and CD8þ T cells
from SIVmac251-infected animals with soluble CD95L con-
siderably increased the proportion of dead cells over that for
cells incubated with medium alone. This increase in the rate of
cell death was significantly greater than that observed for T
cells from uninfected animals and animals infected with the
Dnef strain (Figure 2c). Both the CD45RAþ and CD45RA– T-
cell subsets from SIVmac251-infected animals were more
susceptible to death induced by CD95L (Figure 2d). However,
CD45RA– T cells were more prone to spontaneous and
CD95L-induced apoptosis than CD45RAþ T cells. Although
we found no difference in the proportion of T cells expressing
CD95, our results provide the first demonstration that T cells
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Figure 2 CD95 expression and susceptibility to CD95 ligation-mediated cell
death in T cells from SIV-infected macaques. (a) CD95 mRNA levels in PBMC
from uninfected macaques (SIV–), and macaques infected with the nef-deleted
SIVmac251 clone (nef–) or the SIVmac251 strain (SIVþ ). Data are the
means7S.D. of four individual macaques. (b) Expression of the CD95 molecule
on CD4þ and CD8þ T cells. Each symbol represents the results from one
individual. (c) CD95-mediated T-cell death was assessed in the absence (–) or
presence (þ ) of rhCD95L (400 ng/ml). Each circle represents the results from
one individual. (d) Proportion of the CD45RAþ and CD45RA– T-cell subsets
primed for apoptosis following CD95 ligation. Data are the means7S.D. of four
and five individual animals uninfected (&) and infected with SIVmac251 (’),
respectively. (e) Longitudinal analysis of CD95 ligation-mediated CD4 (J) and
CD8 (K) T-cell death as a function of plasma viral load (&) in four individual
SIVmac251-infected monkeys. Statistical significance was assessed using
Student’s t-test (*Po0.05; ns: not significant)
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from pathogenic SIVmac251-infected animals are more likely
to undergo apoptosis in response to CD95-ligation during the
chronic asymptomatic phase.
CD4þ and CD8þ T cells from HIV-infected humans are

two to three times more susceptible to apoptosis than cells
from uninfected individuals (data not shown). We performed
similar experiments with T lymphocytes from chimpanzees
and found that the levels of CD4 T-cell apoptosis induced by
the agonistic CD95mAb did not differ significantly for HIV-
infected and uninfected animals (data not shown).
Thus, the results obtained for CD4þ and CD8þ T cells

from SIVmac251-infected macaques are consistent with
those obtained for cells from HIV-1-infected humans (in-
crease in rates of spontaneous and CD95-induced cell death,
inverse correlation between spontaneous apoptosis and T-
cell number). Although the percentage of T cells expressing
CD95 increased in both virus-infected human and macaque T
cells, statistically significant differences were observed only
for human cells. This may, at least in part, be due to the
percentage of CD95-expressing T cells in uninfected maca-
ques being considerably-higher than that in humans. Simi-
larly, the results obtained for CD4þ T cells from HIV-infected
chimpanzees, which do not develop an AIDS-like illness, were
generally similar to those obtained for cells from macaques
infected with the nonpathogenic Dnef strain (no increase in
spontaneous or CD95-induced apoptosis or CD95 expres-
sion).
Longitudinal analysis of CD95L-induced cell death was

performed for four macaques, two of which were slow
progressors (monkeys 264 and 94422), the other two being
progressors (monkeys 266 and 94438). The rates of CD4þ
and CD8þ T-cell death induced by CD95 ligation were higher
in progressors than in slow progressors, as was viral load
(Figure 2e). Nonetheless, no obvious one-to-one correlation
between changes in viral load and changes in the suscept-
ibility of CD4þ or CD8þ T cells to CD95L-induced apoptosis
were apparent. For example, the rate of CD8 T-cell death
decreased in monkey 266 between days 200 and 400,
whereas plasma viral load remained high (4106 copies/ml)
during this period. These data suggest that an abnormally
high susceptibility of CD4þ T cells and CD8þ T cells to
apoptosis induced by CD95 ligation is associated with
pathogenic SIV infection and progression towards AIDS or
an AIDS-like disease. They also suggest that viral load,
although possibly important, is not the sole factor determining
susceptibility to cell death via the CD95 pathway.

Caspase activation is not essential for
spontaneous T-cell death in pathogenic
SIV-infected macaques

Caspase activation is a key biochemical event in apopto-
sis.9,10 Flow cytometry with a fluorescent substrate (PhiPhi-
Lux) showed that the level of caspase activity was higher in T
cells from SIVmac251-infected macaques than in cells from
uninfectedmacaques after overnight culture. This higher level
of caspase activity was associated with increases in chroma-
tin condensation and fragmentation, as assessed by acridine
orange staining (Figure 3).

We investigated whether the spontaneous death of CD4þ
and CD8þ T cells from SIVmac251-infected macaques was
prevented by either the broad-spectrum caspase inhibitor
zVAD-fmk and/or cytokines. Preincubation of T cells fromSIV-
infected macaques for 30min with zVAD-fmk prevented the
death of both CD4þ and CD8þ T cells induced by rhCD95L
(98735% of prevention). It also prevented the chromatin
condensation and fragmentation characteristic of caspase-
dependent apoptosis (data not shown). FA-fmk, a cathepsin
protease inhibitor, had no effect on cell death (data not
shown). zVAD-fmk, which efficiently prevented CD95L-
induced cell death, only slightly inhibited spontaneous cell
death (less than 15% inhibition; Figure 4). Despite this very
weak effect on cell survival, zVAD-fmk inhibited chromatin
condensation and fragmentation in the dying cells (by about
70%, data not shown). IL-2 and IL-15 reduced the death rate
of both CD4þ and CD8þ T cells, although these compounds
generally had a greater effect on CD8þ T cells than on
CD4þ T cells. IL-10 had a significant preventive effect only on
the spontaneous death of CD8þ T cells (Figure 4c). IL-7, a
cytokine known to play a critical role in regulating T-cell
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development, regeneration, and function, had no significant
effect on the spontaneous death of CD4þ or CD8þ T cells
(Figure 4c). A combination of IL-2 and zVAD-fmk was nomore
effective than IL-2 alone in preventing spontaneous cell death
(Figure 4b).
Thus, in contrast to the essential role of caspase activation

downstream from CD95 ligation, the activation of caspases
involved in producing certain features of the apoptotic
phenotype (chromatin condensation and fragmentation) is
not essential for the spontaneous death of T cells from
SIVmac251-infected animals.

Spontaneous death of T cells from SIVmac251-
infected macaques is CD95/CD95L-independent

The requirement of caspases for CD95-mediated T-cell death
but not for spontaneous T-cell death raises questions
concerning the possible involvement of CD95/CD95L inter-
actions in spontaneous T-cell death. CD95L expression has
been reported to increase during HIV32–34 and SIV infec-
tions.35 CD95L mRNA levels were significantly higher in
PBMC from macaques infected with SIVmac251 or Dnef than
in uninfected animals (Figure 5a). CD95L expression could
not be unequivocally detected onmacaques by flow cytometry
with the antibodies currently available (data not shown). We
therefore carried out Western blotting. T cells from SIV-
mac251-infectedmacaques expressed CD95L (35 kDa) more

strongly than T cells from uninfected animals (Figure 5b), and
CD4þ and CD8þ T cells were found to express CD95L to
similar extents (Figure 5c). Lower levels of CD95L expression
were observed on T cells from some of the macaques infected
with Dnef. However, for these animals, expression was
stronger on CD8þ T cells than on CD4þ T cells.
We investigated whether CD95-Fc could prevent the

spontaneous death of T cells from SIVmac251-infected
animals. T cells from pathogenic SIVmac251-infected maca-
ques were more susceptible to apoptosis induced by CD95
ligation (Figure 2c) and expressed CD95L strongly (Figure
5b,c). However, the CD95-Fc fusion protein had no major
effect on the spontaneous cell death rate of CD4þ or CD8þ
T cells (Figure 6). Thus, the death rate of CD4þ or CD8þ T
cells cultured in the presence of CD95-Fc was not decreased
by more than 15% with respect to cells maintained in medium
alone, and no significant differences were observed in
comparisons of treated and untreated cells.
Jurkat T cells have been extensively used in studies of

CD95L-mediated cell death, and they provide a means of
assessing cytotoxicity independently of viral effects in the SIV
model.36 We found that CD4þ T cells had no significant

0

20

40

60

80

IL-2 IL-7 IL-15 IL-10

0

20

40

60

80

C
el

l d
ea

th
 p

re
ve

nt
io

n
(%

)

zVAD (µM) 
0 10 50 250

0

10

20

30

40

0 10 25 50
IL-2 (ng/ml)

C
el

l d
ea

th
(%

)

0

10

20

30

40

IL-2 IL-7 IL-15 IL-10

C
el

l d
ea

th
 p

re
ve

nt
io

n
(%

)

C
el

l d
ea

th
 p

re
ve

nt
io

n
(%

)

a

c

- + + - + +
+ - + + - +

IL-2
zVAD

CD4 CD8

**

*
*

* * * *
*

nsns

ns

ns

ns

b

Figure 4 Modulation of spontaneous cell death in macaques infected with the
pathogenic SIVmac251 strain. (a) CD4 (&, J) and CD8 (’,K) T-cell death in
PBMC incubated with various concentrations of zVAD-fmk (zVAD (&,’): 0, 10,
25, and 50 mM) or IL-2 (J,K; 0, 10, 50, and 250 ng/ml). (b) CD4 (&) and CD8
(’) T-cell death after incubation in the absence (–) or presence (þ ) of zVAD-
fmk (50 mM) and/or IL-2 (20 ng/ml). The preventive effect was evaluated as
follows: (1–(spontaneous cell death after treatment/spontaneous cell
death))� 100. Data are means7S.D. of 12 individual macaques. Statistical
significance was assessed using the paired Student’s t-test (*Po0.05; ns: not
significant). The preventive effects of zVAD-fmk and IL-2 were compared with the
effects of medium alone. (c) T cells were incubated in the presence of IL-2, IL-7,
IL-10, or IL-15 (20 ng/ml). The preventive effect was determined as described in
(b). Data are means7S.D. of five individual macaques. Statistical significance
was assessed using the paired Student’s t-test (*Po0.05; ns: not significant)
comparing cytokine pretreatment with medium alone

Figure 5 CD95L expression in T cells from macaques. (a) CD95L mRNA levels
were determined in freshly isolated PBMC from uninfected macaques (SIV–),
and macaques infected with the nef-deleted SIVmac251 clone (nef–) or the
SIVmac251 strain (SIVþ ). Data are means7S.D. of four individual macaques.
Statistical significance was assessed using Student’s t-test (ns: not significant).
(b) Western blots show CD95L (35 kDa) levels in PBMC from three individual
macaques in each group. Actin was used as a control for loading. (c) Western
blots show CD95L levels in CD4þ and CD8þ T cells from macaques either
infected with the nef-deleted SIVmac251 clone (nef–) or infected with the
SIVmac251 strain (SIVþ ). Actin was used as a control for loading
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cytotoxicity (12712%), with an ET ratio of 5/1 with respect to
soluble recombinant CD95L, which, at a concentration of
20 ng/ml, caused the death of 80% of cells cultured overnight
(data not shown). Moreover, although Jurkat cells are
extremely susceptible to cell death induced by CD95
engagement, an excess of soluble CD95-Fc fusion protein,
which blocks CD95/CD95L interactions, had no effect on the
cytotoxicity of CD4þ T cells (data not shown).
Thus, CD95L does not seem to be essential for the

spontaneous death of T cells from SIVmac251-infected
animals.

Spontaneous death of T cells from SIVmac251-
infected macaques involves a loss of
mitochondrial membrane potential associated with
upregulation of Bim and Bak, but not of Bax

We observed that the higher rate of spontaneous death of T
cells from SIVmac251-infected macaques was associated
with a higher proportion of cells having high levels of
phosphatidyl-serine (detected by staining with FITC-labelled
annexin-V) and a decrease in Dcm, as assessed with DiOC6

(Figure 7a). Two-colour flow cytometry, using DiOC6 and
labelled anti-CD4/CD8mAbs (Figure 7b), showed that a
higher proportion of CD4þ and CD8þ T cells from
SIVmac251-infected macaques (SIVþ , n¼6) than from
uninfected macaques (SIV–, n¼4) displayed decreases in
Dcm.
Proapoptotic members of the Bcl-2 family have been

reported to be crucial in the control of Dcm in various
pathways leading to apoptosis,12,13 including that associated
with HIV-1 infection.16–18 Levels of three proapoptotic proteins
– Bak (30 kDa), Bax (23 kDa), and BimL (25 kDa) – were
assessed by Western blotting with proteins from purified
CD4þ and CD8þ T cells from SIVmac251-infected animals

and uninfected controls (Figure 7c,d). The amount of Bax in
CD4þ and CD8þ T cells was similar in cells from infected
and uninfected macaques (with the exception of one of the six
infected animals tested), whereas BimL and Bak protein
levels were 30–50% higher in CD4þ and CD8þ T cells from
SIVmac251-infected animals. These results are not consis-
tent with Bax playing a major role in the loss of Dcm and
subsequent cell death, but provide the first evidence that BimL
and Bak may be involved in AIDS pathogenesis.

Discussion

Our results demonstrate an increase in susceptibility to
apoptosis mediated by two different pathways in T cells from
macaques infected with the virulent SIVmac251 strain, but not
in T cells from animals infected with the nonpathogenic
SIVmac251-Dnef strain. T cells from macaques infected with
the pathogenic strain displayed higher levels of spontaneous
apoptosis, which were positively correlated with both viral load
and the extent of T-cell depletion. In addition, both CD4þ and
CD8þ T cells from SIVmac251-infected animals demon-
strate amarked increase in susceptibility to apoptosis induced
by CD95 ligation. This is consistent with previous work
indicating that peripheral blood T cells from HIV-infected
individuals34,37–40 are more sensitive than those of controls to
apoptosis induced by CD95 ligation. Although spontaneous
apoptosis and CD95-induced apoptosis involved caspase
activation and changes inmitochondrial permeability, different
intracellular signalling pathways seemed to be involved in
these two processes. The incubation of T cells from
SIVmac251-infectedmacaqueswith aCD95-Fc fusion protein
did not inhibit spontaneous apoptosis. This suggests that
signalling through CD95 is not involved in this process, but
does not exclude the possibility that the cells had already
received a lethal signal via CD95 in vivo. Consistent with these
results, McCloskey et al.41 found that the T cells from HIV-
infected childrenwho underwent spontaneous apoptosis were
mostly CD95-negative. We also found that the spontaneous
death of T cells from pathogenic SIVmac251-infected
macaques was not prevented by the broad-spectrum caspase
inhibitor, zVAD-fmk, despite the inhibitory effects of this
molecule on chromatin condensation and fragmentation in the
dying cells and its prevention of cell death due to CD95
ligation. Thus, caspase activation occurred during sponta-
neous apoptosis, not essential for cell death, as described in
other cell types.17,42–46

The mechanisms responsible for spontaneous apoptosis
are unclear. In particular, it remains a matter of debate
whether other members of the TNF receptor family are
involved. Some studies have suggested a role for TRAIL,47–49

TNF-R1 and TNF-R2,5,50 whereas others reported that the
engagement of these receptors did not increase the rate of T-
cell death above the spontaneous rate.39,51,52 In contrast to
the results obtained with crosslinked CD95L, we found that
the crosslinking of TRAIL, TNF, and TWEAK ligands did not
significantly increase the rate of apoptosis in CD4þ or CD8þ
T cells from SIVmac251-infected animals above the sponta-
neous rate (data not shown), suggesting that these ligands
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Figure 6 Functional assay for CD95L. PBMC from SIVmac251-infected
macaques were incubated in the absence (–) or presence (þ ) of the CD95-Fc
molecule (10 mg/ml). CD4 and CD8 T-cell death was assessed by two-colour flow
cytometry. Each symbol represents one individual macaque. Statistical
significance was assessed using the paired Student’s t-test (ns: not significant)
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play no more than a minimal role in the T-cell depletion
observed during SIV infection.
Spontaneous apoptosis resulted in a loss of Dcm, despite

the presence of caspase inhibitor, suggesting that changes in
mitochondrial permeability may be a central event in the
regulation of T-cell death. The proapoptotic members of the
Bcl-2 family have been shown to be involved in the
mitochondrial membrane permeabilisation associated with
Dcm loss.12,13 Bax overproduction in Jurkat cells has been
reported to trigger the rapid targeting of Bax to the
mitochondria, where it induces the loss of Dcm loss and cell
death.42 It was recently reported that p53 phosphorylation
may be involved in the upregulation of Bax in various in vitro
models of HIV infection16,18 and that p53 phosphorylation in
vivo is correlated with plasma viral load.16 Our data from

SIVmac251-infected macaques were not consistent with an
association between T-cell death and an increase in Bax
production. Our findings do not, however, exclude the
possibility that SIV infection favours the translocation of Bax
from the cytosol to the mitochondria, without a change in gene
expression. Such a phenomenon has been reported in other
cell types in response to growth factor deprivation.53 We did
observe a clear increase in the levels of two other proapoptotic
proteins, Bak and BimL. Bim, a ‘BH3-only protein’, binds to
prosurvival members of the Bcl-2 family and requires Bax or
Bak for the induction of cell death54,55 by the caspase-
independent mitochondrial permeabilisation pathway.55 The
overproduction of Bak also induces cell death through
caspase-independent processes.43 Bim was recently re-
ported to promote the death of autoreactive thymocytes and

Figure 7 Mitochondrial membrane potential loss in SIV-infected macaques is associated with the upregulation of Bim and Bak. (a) Representative histograms showing
measurement of phosphatidyl serine exposure (using FITC-labelled annexin-V) and of mitochondrial membrane potential (using DiOC6) in PBMC of an uninfected (SIV–)
macaque and an SIVmac251-infected macaque (SIVþ ). (b) Percentages of CD4þ and CD8þ T cells displaying Dcm loss. Results are the mean7S.D. of six
individual SIV-infected (SIVþ ) and four healthy macaques (SIV–). (c) Western blots of Bim, Bak, and Bax in CD4þ and CD8þ T cells from a healthy (SIV–) and a
SIVmac251-infected macaque. Actin was used as a control for loading. (d) Relative levels of the proteins in three uninfected (&) and three SIVmac251-infected
macaques (’). Relative levels were calculated by dividing the intensity of the signal for the proteins considered by the intensity of the actin signal. The intensity of the
protein signal was assessed with NIH Image version 1.62. Statistical significance was assessed using Student’s t-test (*Po0.05; ns: not significant)
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to be involved in cell death due to cytokine deprivation.56–59

Moreover, Bim is critical for the cell death of activated T and B
cells.60 These proteins have not previously been implicated in
cell death associated with HIV or SIV infection. The induction,
by these proteins, of mitochondrial permeabilisation by
caspase-independent mechanisms, and the observed in-
crease in the levels of these proteins in SIV-infected monkeys
suggest that the upregulation of Bak and Bimmay be involved
in the loss of Dcm loss and spontaneous T-cell death
(Figure 8). The mechanisms underlying the upregulation of
Bim and Bak upon SIV infection remain unclear.
Our results also provide insight into the mechanisms

underlying the increase in susceptibility to apoptosis induced
by CD95 ligation in T cells from SIVmac251-infected animals.
Following the binding of CD95 to its ligand CD95L, several
proteins from the death-inducing signalling complex (DISC)
participate in activation of the initiator caspase-8.9,10 Once
activated, caspase-8 triggers the activation of downstream
caspases, a process that can be modulated by zVAD-fmk. An
alternative pathway was recently described. This pathway is
independent of caspase-8, and involves theRIP kinase, which
induces a necrotic death that is not prevented by zVAD-fmk.61

Here, we found that zVAD-fmk prevented CD95-mediated T-
cell death, indicating that the process of cell death in T cells
from SIVmac251-infected animals was independent of RIP.
FLIP-L and FLIP-S act as dominant-negative inhibitors of
caspase-8, preventing the processing and release of active
caspase-8 from death receptors.62 However, we found that
the increase in the rate of CD95-mediated T-cell death in
rhesus macaques was not associated with a decrease in
mRNA levels for FLIP-L and FLIP-S (Figure 3a). Moreover,
although the proportion of CD4þ and CD8þ T cells from
SIVmac251-infected macaques expressing CD95 tended to
be higher than that of T cells from uninfected animals, these
differences were smaller than those observed in humans and
were not statistically significant. This suggests that changes in
CD95 expression are unlikely to account for the greater
susceptibility of the cells to CD95-induced apoptosis.
Nef has been reported to sensitise cells to CD95-induced

apoptosis.25,63 However, Nef is an intracellular protein and the
proportion of infected CD4þ T cells from SIVmac251-
infected rhesus macaques did not exceed 2% of the total
peripheral blood CD4þ T-cell population (data not shown).
Thus, most of the cells undergoing apoptosis in vitro are not
infected, suggesting that indirect mechanisms are involved.
The interaction of the HIV envelope protein with the
CD4molecule may prime CD4þ and CD8þ T cells for
CD95-mediated apoptosis.64–67 We recently demonstrated
that the incubation of resting CD4þ T cells from healthy
donors, even in the presence of an inhibitor of the viral
replication, was sufficient to prime CD4þ T cells for apoptosis
in response to CD95 ligation.68,69 This priming did not require
further T-cell activation, suggesting that interactions between
the virus and T cells are sufficient. In this study, we found that
susceptibility to CD95-induced apoptosis and viral load were
higher in SIVmac251-infected macaques that were progres-
sors than in those that were slow progressors, and in animals
infected with SIVmac251 than in animals infected with Dnef.
Consistent with a recent report indicating that the increase in
CD95 sensitivity of CD8þ T cells from HIV-1-infected
individuals is not correlated with plasma viral load,70 in
individual SIV-infected macaques, changes in viral load and
susceptibility to CD95-induced apoptosis were not strongly
correlated. Other factors must therefore be involved.
One such factor may be the cytokine environment. We

found that both IL-2 and IL-15 reduced the death rate of
CD4þ and CD8þ T cells from SIVmac251-infected maca-
ques following spontaneous induction ex vivo and induction by
CD95 ligation. We have reported similar effects of IL-2 on the
CD95L-induced killing of T cells from HIV-infected humans.39

IL-2 immunotherapy was recently shown to have beneficial
effects on CD4þ T-cell counts during HAART in HIV-infected
individuals.71 This raises the key question of whether these
beneficial effects result from the prevention of T-cell apopto-
sis. This issue is currently under investigation in our
laboratory, in a randomised, controlled cohort of French
HIV-positive subjects.
Unlike IL-2 and IL-15, IL-7 did not prevent the spontaneous

or CD95L-induced death of T cells. The receptors for all the
three of these cytokines share a common g-chain (gc) and use
a common JAK3/STAT5 signalling pathway, but only the IL-2
and IL-15 receptors share the IL-2Rb subunit.72 Moreover, the
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Figure 8 Two death pathways operating during SIV infection. Caspase-
independent cell death: Upregulation of the Bim and Bak proteins mediates
mitochondrial membrane potential loss, leading to the release of apoptogenic
factors from the mitochondria and further cell death. In this form of cell death,
caspase inhibitor (zVAD-fmk) prevented the apoptotic phenotype (chromatin
condensation and fragmentation) but did not prevent subsequent cell death.
Cytokines, in contrast, prevented both the apoptotic phenotype and cell death, by
preserving mitochondrial membrane potential. Caspase-dependent cell death: T
cells encountering either activated T cells that induce CD95L translocation from
the cytosol to the membrane or neighbouring CD95L-expressing cells are more
prone to cell death. In this form of cell death, death receptors activate caspases,
leading to cytochrome c release from the mitochondria and an amplification of
caspase activation. Caspase inhibitor and, to a lesser extent, cytokines prevent
mitochondrial damage and cell death
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activation of STAT5 by IL-2 has been reported to be involved in
T-cell proliferation and AICD, whereas the IL-2Rb chain has
been reported to be involved in the activation of Akt and Bcl-2
production. We found that IL-2 and IL-15 prevented cell death
but IL-7 did not, suggesting that the IL-2Rb subunit is involved
in this process.73 IL-10 also increased the survival rate of
CD8þ T cells, but not CD4þ T cells, from SIVmac251-
infected macaques. These observations are reminiscent of
previous studies showing that IL-10 can rescue human CD8þ
T cells from apoptotic cell death.39,74,75 The signalling cascade
activated by IL-10 differs from that used by IL-2 and IL-15. The
binding of IL-10 to its receptor complex activates the JAK1 and
Tyk2 kinases and involves STAT3 and STAT1.76–78 Never-
theless, IL-2, IL-15, and IL-10 all prevented CD8 T-cell death
and DCm loss, despite differences in the signal transduction
pathway used. Preliminary observations in cells from SIV-
infected macaques suggest that these cytokines increase Bcl-
2 production (data not shown), supporting the hypothesis that
cytokines may enable antiapoptotic proteins to counteract the
proapoptotic activity of Bim and Bak.
Finally, we found that the level of CD95L expression was

much higher on T cells from SIVmac251-infected macaques
than on T cells from uninfected animals. The mechanisms
responsible for the induction of CD95L are unclear, but it has
been suggested that the increase in CD95L levels observed in
T cells from HIV-infected humans result from immune
activation and/or the interaction of T cells with viral proteins,
including gp120 and tat.79,80 Despite the observed increase in
CD95L levels, this ligand did not appear to be involved in the
spontaneous death of either CD4þ or CD8þ T cells. CD95L
may remain sequestered in the cytosol,81 and engagement of
the TCR/CD3 complex is required to trigger T-cell death.82We
suggest that in the absence of T-cell activation, CD95L may
not reach the cell membrane in sufficiently large amounts to
exert its cytotoxic potential. As T cells from SIVmac251-
infected macaques are more prone to apoptosis after CD95
ligation, and may be primed to produce larger amounts of
CD95L following activation, the interaction of these T cells in
vivo with neighbouring CD95L-producing cells (trans), and/or
after TCR triggering (cis), may increase the rate of cell death
(Figure 8). The resulting shortened half-life of activated cells in
vivomay account for the CD95/CD95L pathway not appearing
to contribute to spontaneous apoptosis ex vivo.
Our observations suggest that caspase-dependent and -

independent pathways may both play a role in the progressive
decrease in the number of T cells during SIV infection.
Moreover, our finding that cytokines prevented spontaneous
T-cell death and caspase inhibitors prevented CD95-
mediated T-cell death suggest two complementary strategies
that may restrict T-cell depletion in vivo.

Materials and methods

Human and primate blood samples

Peripheral venous blood was obtained from HIV-1-seropositive adults and
healthy HIV-seronegative controls followed by the Department of
Infectious Diseases, Centre Hospitalier de Tourcoing, France. Blood
samples were collected in heparinised tubes. HIV1-infected individuals
had CD4 T-cell counts of 60–1200/mm3. Peripheral venous blood was also

obtained from various primate species, and collected in heparinised tubes.
Chimpanzees experimentally infected with the HIV-1-LAI strain and
uninfected controls were housed at the Laboratory for Experimental
Medicine and Surgery in Primates (LEMSIP), New York University Medical
Center (Tuxedo, NY, USA). Rhesus macaques were housed at the
Primate Centre, Pasteur Institute (Paris, France), and were experimentally
infected either with the pathogenic SIVmac251 viral strain or with the
nonpathogenic nef-deleted SIVmac251 clone.

Antibodies and reagents

Murine anti-human monoclonal antibodies recognising the following
antigens were used: CD4, Leu 3a, and PercP-labelled Leu 3a (Becton
Dickinson, Mountain View, CA, USA) or OKT4 (Ortho Diagnostic Systems,
Roissy, France); CD8, Leu 2a, and PercP-labelled Leu 2a (Becton
Dickinson); CD19, IOB4 (Beckman-Coulter, Marseille, France); CD56,
IOT56 (Beckman-Coulter); CD69, FITC-labelled (Becton Dickinson); PE-
labelled DX2 (PharMingen, San Diego, CA, USA) HLA-DR, FITC-labelled
(Becton Dickinson); control IgM isotype GC323 (Beckman Coulter). The
other reagents used were: acridine orange stain (Beckman Coulter),
DiOC6 (Molecular Probes), FITC-labelled Annexin-V (Beckman Coulter),
and the irreversible caspase inhibitor zVAD-fmk (Bâle Biochimie, Voisins-
le-Bretonneaux, France). Recombinant human cytokines (IL-2, IL-7, IL-10,
and IL-15) were purchased from R&D Systems (Abingdon, UK). Soluble
recombinant human CD95 ligand and a soluble CD95 decoy receptor
(human CD95-Fc immunoglobulin fusion protein) were obtained from
Alexis Corporation.

Cell preparation and culture

PBMC were isolated from heparinised venous blood by Ficoll–Hypaque
density gradient centrifugation, and cultured in complete medium.43 In
some experiments, PBMC were depleted of either CD4þ or CD8þ T
cells by negative selection, using CD4 or CD8 mAb and magnetic beads
coated with anti-mouse IgG (Dynal, Biosys, Compiègne, France), as
previously described.6,83 Less than 5% contamination with CD4þ or
CD8þ T cells was observed, as assessed by flow cytometry (FACScan,
Becton Dickinson).

Assessment of apoptosis

Apoptotic cells were quantified by flow cytometry. We cultured 5� 105

cells/well in complete medium for 24 h and labelled them with acridine
orange, which stains nuclei (0.1 mg/ml); lymphocytes were gated based on
forward- and side-light scattering. Apoptotic cells were identified on the
basis of their characteristically lower fluorescence intensity and forward-
light scattering than living cells.83 The percentage of apoptotic cells was
also quantified by flow cytometry, using FITC-conjugated annexin-V. A
two-step procedure was used: cells were first stained with PercP-labelled
anti-CD4 or anti-CD8 mAbs (30 min at 41C), and then, after washing in
PBS, they were incubated in binding buffer with FITC-Annexin-V (Ax)
according to the manufacturer’s instructions.24 Apoptosis was calculated
as follows: (CD4þAxþ )/(CD4þAxþ þCD4þAx–)� 100. Mitochondrial
membrane potential was assessed using DiOC6, as previously
described.17

Specific cytotoxicity mediated by CD95L

Functional CD95L levels were determined by coculturing PBMC, CD4þ T
cells, and CD8þ T cells from macaques with effector cells (Jurkat cells) at
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various E/T ratios for 16 h in round-bottomed plates. Cytotoxicity was
assessed by flow cytometry, using a PC5-labelled anti-CD4 mAb
(Beckman Coulter) that recognised only the human CD4 molecule, and
FITC-labelled annexin-V. We analysed 4000 target cells. As a control,
Jurkat cells were incubated in the absence or presence of 100 ng/ml rh-
CD95L. The percentage of dying cells was calculated as follows:
((experimental cell death–spontaneous cell death)/(CD95L mediated cell
death–spontaneous cell death))� 100. In some experiments, cells were
incubated in the presence of 20mg/ml of a CD95-Fc fusion protein that
blocks the interaction between CD95 and its ligand.

Determination of caspase activity

The cell-permeable fluorogenic caspase substrate Phiphilux-G2D2
(OncoImmunin, Gaithersburg, MD, USA) was used to monitor caspase
activity. Cells were cultured for 24 h, collected by centrifugation, and
resuspended in 50ml of Phiphilux-G2D2 substrate solution supplemented
with 5% foetal calf serum. Cells were incubated for 45 min at 371C in an
atmosphere containing 5% CO2, in an incubator. The cells were pelleted
and resuspended in 500 ml of Phiphilux dilution buffer, and fluorescence
was determined with a FACScan flow cytometer (Becton Dickinson).

Western blotting

For total extracts, cells were incubated in SDS lysis buffer, boiled for
10 min and centrifuged 400� g for 15 min at room temperature. Protein
concentration was determined with the DC Protein Assay (BioRad
Laboratories, Hercules, CA, USA). Equal amounts of protein were boiled
for 5 min in 2� Laemmli sample buffer with 2-b mercaptoethanol and run
on a 4/20% polyacrylamide gel (BioRad Laboratories). Proteins were then
transferred to a PVDF membrane (BioRad Laboratories), which was
probed with specific antibodies. Antibody binding was detected by
incubation with horseradish peroxidase-conjugated secondary antibodies
(Amersham, Orsay, France), and enhanced chemiluminescence (Amer-
sham). The antibodies used were a mouse anti-CD95L antibody (clone 13,
Transduction Laboratories, San Diego, CA, USA),84 a rabbit polyclonal
anti-Bax antibody (N-20 and P19, Santa Cruz Biotechnology, Santa Cruz,
CA, USA), a rabbit polyclonal anti-Bak antibody (Calbiochem, Meudon,
France), a rabbit polyclonal anti-Bim antibody (Stressgen, Victoria,
Canada), and a mouse anti-actin mAb (clone AC40, Sigma).

Quantification of mRNA

Total RNA was purified from 5� 106 PBMC using RNAzol (Bioprobe
Systems, Montreuil-sous-Bois, France), and quantified by measurement
of absorbance at 260 nm. First-strand cDNA was synthesised by
incubating 3 mg of total RNA with Moloney murine leukaemia virus
reverse transcriptase (Life Technologies, Gaithersburg, MD, USA) and
1.25 mM random hexanucleotide primers (Pharmacia Biotech, Uppsala,
Sweden) for 1 h at 421C under the conditions recommended by the
manufacturer. The resulting samples were stored at –801C.

To ensure that samples could be compared, we then determined the
amount of cDNA corresponding to the abundant ribosomal protein S14 in
each cDNA preparation by competitive PCR, performed as previously
described.85 An internal standard 4 bp shorter than the target sequence
was used.

Macaque cDNAs (CD95: genebank number AF530075; forward primer:
50-CAGAACTTGGAAGGCCTGCATCAC; reverse primer: 50-GCACG-
CAGTCTGGTTCATCCTCA; probe: 50-GGAAAGCTAGGGACTGCAC.
CD95L: GenBank accession number AF530076; forward primer: 50-

ACCAGCCAGAAGCATACAGCATCA; reverse primer: 50-CCATAGG-
TGTCTTCCCATTCCAGAG; probe: 50-GGAGAAGCAAATAGGTCACC)
were quantified by PCR as previously described (R1). Briefly, reaction
mixtures (final volume 100 ml) contained 20 mM Tris-HCl (pH 8.4), 50 mM
KCl, 1.5 mM MgCl2, 200 mM each dNTP, 10 pmol of oligonucleotide
primers, 2.5 U Taq polymerase (Life Technologies), and cDNA. All
samples were amplified during the same PCR, and an equivalent amount
of cDNA, quantified as described above, was used in each case. Cycling
parameters were as follows: denaturation, 951C for 1 min; annealing,
601C (CD95, CD95-L); extension, 721C for 1 min. In preliminary
experiments, the optimal number of cycles was determined for each
cDNA such that samples would be obtained during the exponential phase
of the PCR reaction. After the appropriate number of cycles (CD95, 30
cycles; CD95L, 34 cycles), aliquots from each reaction mixture were
removed, DNA was denatured, and samples were applied to Hybond-N
nylon membranes (Amersham) in a dot-blot format. The membranes were
hybridised with a probe that recognised a sequence within the amplification
product, which had been labelled at the 50-end using T4 polynucleotide
kinase (Life Technologies) and (g-32P)ATP. The membrane was washed
and bound radioactivity quantified by electronic autoradiography (Instant
Imager, Packard, Meriden, CT, USA). Results are expressed as CPM after
subtraction of background (o50 CPM in all experiments). Results are the
means of duplicate determinations for each sample. In all cases, the
addition of half the normal amount of cDNA to the initial reaction resulted in
the expected 50% reduction in signal (data not shown).

Quantification of plasma viral load

A sensitive quantitative competitive (QC) RT-PCR assay was used for to
monitor SIV RNA levels in plasma samples. Plasma samples that had only
been thawed once were centrifuged at 10 000� g for 2 h to concentrate
SIV virions. RNA was extracted with phenol : chloroform : isoamyl alcohol
and precipitated by incubation overnight with ethanol at –201C. For the RT
reaction, 5 ml of viral RNA was diluted 1 : 4 in DEPC-treated water, and
15 ml of RT mix – 1� PCR Buffer II (Perkin-Elmer), 5 mM MgCl2, 1 mM
each dNTP, 2.5 mM oligo d(T) primer, RNase inhibitor (RNAguard,
Pharmacia) and 50 U of reverse transcriptase (MMLV Superscript, Gibco)
– was added. The RT reaction was performed at 421C for 30 min and the
enzyme was then inactivated by heating at 951C for 5 min. A known
number of copies of competitor DNA was added to the cDNA. The
competitor DNA consisted of a plasmid containing a nef gene with a
175 bp deletion. The following primers were used for nested amplification
of nef sequences in the sample and competitor: Preco (50-CAG AGG CTC
TCT GCG ACC CTA C-30) and K3 (50-GAC TGA ATA CAG AGC GAA
ATG C-30) for the first amplification, K1 (50-TGG AAG ATG GAT CCT CGC
AAT CC-30) and A2 (50-GGA CTA ATT TCC ATA GCC AGC CA-30) for the
second amplification. Cycling parameters were as follows: 951C for 1 min
followed by 35 cycles of 951C for 30 s, 601C for 45 s, and 721C for 1 min,
followed by extension at 721C for 7 min. For the second PCR, 5 ml of the
first amplification product was amplified for 25 cycles as above, except that
an annealing temperature of 551C was used. Amplified products were
separated on 2.5% agarose gels and stained with ethidium bromide. RNA
copy number was determined from the competitor-template equivalence
point by direct visual examination of the photographed gel.

Statistical analysis

Statistical significance was assessed by Student’s t-test or Student’s
paired t-test, as appropriate. A value of Po0.05 was considered
significant.
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