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Abstract
Apoptotic cell death is executed by the caspase-mediated
cleavage of various vital proteins. Elucidating the conse-
quences of this endoproteolytic cleavage is crucial for our
understanding of cell death and other biological processes.
Many caspase substrates are just cleaved as bystanders,
because they happen to contain a caspase cleavage site in their
sequence. Several targets, however, have a discrete function in
propagation of the cell death process. Many structural and
regulatory proteins are inactivated by caspases, while other
substrates can be activated. In most cases, the consequences
of this gain-of-function are poorly understood. Caspase
substrates can regulate the key morphological changes in
apoptosis. Several caspase substrates also act as transducers
and amplifiers that determine the apoptotic threshold and cell
fate. This review summarizes the known caspase substrates
comprising a bewildering list of more than 280 different
proteins. We highlight some recent aspects inferred by the
cleavage of certain proteins in apoptosis. We also discuss
emerging themes of caspase cleavage in other forms of cell
death and, in particular, in apparently unrelated processes,
such as cell cycle regulation and cellular differentiation.
Cell Death and Differentiation (2003) 10, 76–100. doi:10.1038/
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Introduction

In 1998, we published a list of caspase substrates comprising
65 different proteins that were cleaved by proteases of the
caspase family.1 Most of the substrates known at that time
could be categorized into a few functional groups, including
proteins involved in scaffolding of the cytoplasm and nucleus,

signal transduction and transcription-regulatory proteins, cell
cycle controlling components and proteins involved in DNA
replication and repair. Since then, the number of caspase
substrates has considerably increased, more recently in
particular because of a systematic proteome analysis of
apoptotic cells.2–4 To date, more than 280 caspase targets are
identified. Various methods have been employed to search for
caspase substrates, including direct cDNA pool expression
strategies or two-hybrid cloning approaches.5,6 By compara-
tive two-dimensional (2D) gel electrophoresis of healthy and
apoptotic cells, often a few hundred altered protein spots can
be detected. Although not all of them have been confirmed as
caspase targets, such proteomic approaches will certainly
lead to the identification of numerous additional substrates in
the near future (Table 1).

Already now, a bewildering number of substrates are cleaved
by caspases. However, it should be kept in mind that some
proteins might be cleaved very late and less completely during
apoptosis, or not in all cell types. For example, it has been
reported that b-actin can be cleaved by caspases in pheochro-
mocytoma and ovarian carcinoma cells,7,8 whereas in many
other cell types no cleavage was detected.9 Thus, it is possible
that certain protein cleavages are cell type-specific, which may
be because of variations in the expression of individual
caspases. Also, caspase cleavage sites are not always
conserved in different species. For instance, cyclin A is cleaved
during apoptosis of Xenopus oocytes,10 but the caspase
cleavage site is not present in homologues of mammalian
cells. Some proteins, such as DNase-X, contain one or more
classical cleavage sites in their sequence. However, the protein
is virtually not cleaved inside apoptotic cells despite massive
caspase activation.11 Moreover, in some cases, a first cut by
caspases unleashes additional cleavage sites for other types of
proteases. Cleavage of acinus, for instance, by caspase-3 is
necessary but not sufficient to activate its DNA-condensing
activity. For full activation, an additional, still unknown serine
protease has to intervene. Only the combined action of both
proteases generates the mature fragment, which, when added
to purified nuclei, causes chromatin condensation.12

For many of the identified substrates, the functional
consequences of their cleavage are unknown and have only
been inferred from their normal functions. In other cases, the
role of caspase cleavage has been experimentally assessed by
expressing substrate proteins that have mutant caspase
cleavage sites or by expressing protein fragments of the
caspase-cleaved products. Given the high conservation of
the apoptotic phenotype, from worms to mammals, it is highly
likely that a conserved group of crucial caspase substrates
exist. Proteolysis of the latter substrates presumably
leads to the stereotypical destructive alterations that we call
apoptosis.
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Table 1 List of known caspase substrates

Substrateb Physiological Function Cleavage Effect Consequences of Cleavage Cleavage Sitesa References

1. Apoptosis regulators
Apaf-1 Apoptosome component Inactivated? SVTD (271) and a second

unknown site
43, 44

Bad Proapoptotic Bcl-2 protein Activated Cleavage product proapoptotic,
if overexpressed

Human: EQED (14) 45
Mouse: SATD (61)

Bax Proapoptotic Bcl-2 protein Unknown FIQD (33) 46, 47
Bcl-2 Apoptosis inhibitor Inactivated Generation of a proapoptotic

fragment
DAGD (34) 48

Bcl-xL Apoptosis inhibitor Inactivated Generation of a proapoptotic
fragment

HLAD (61), SSLD (76) 49, 50

Bid Apoptosis activator Activated Generation of a proapoptotic
fragment that is myristoylated;
phosphorylation inhibits
cleavage

LQTD (59) 14, 16, 51, 52

c-FLIP Caspase-8 inhibitor LEVD (376) 53
c-IAP1 Caspase inhibitor Inactivated Generation of a proapoptotic

fragment
ENAD (372) 54

Procaspases Procaspase-1-14 Activated Activation by proteolytic
processing

XXXD For a review see
Earnshaw et al.55

XIAP Caspase inhibitor Inactivated? Generation of two fragments
with distinct inhibitory activity
for caspase-3, -7 and -9.
Cleaved XIAP is less
antiapoptotic and ineffective to
activate NF-kB

SESD (242) 56, 57

2. Cell adhesion
APC Adenomatous polyposis coli protein Cleavage separates b-catenin

binding region and N-terminal
armadillo repeat

DNID (777) 58, 59

CALM Clathrin assembly protein of
myeloid leukemia (syn. AP180),
promotes assembly of clathrin
triskelia into clathrin cages

Inactivated Unknown 60

Cas Crk-associated substrate
(p130cas), associates with FAK,
paxillin, involved in integrin
signaling

Inactivated Contributes to disassembly of
focal adhesion complexes,
interrupts extracellular survival
signals

DVPD (416), DSPD (748) 61, 62

b-Catenin Cell adhesion and WNT/wingless
signaling pathway, constituent of
adherens junctions

Inactivated Reduced a-catenin binding and
cell–cell contact, reduced
transcriptional activity,
relocalization to the cytoplasm

SYLD (32), ADID (83), TQFD
(115), YPVD (751), DLMD
(764)

61, 63–65

g-Catenin Adherens junction protein (syn.
plakoglobin)

Inactivated Relocalization to the
cytoplasm, involved in cell
dismantling

Unknown 61, 64, 66

Desmoglein-3 Major transmembrane component
of desmosomes

Inactivated Loss of cell–cell contacts DYAD (781) and additional
unknown sites

67

Desmocollin 3 Component of desmosomes Inactivated Loss of cell–cell contacts Unknown 67
Desmoplakin Desomoplakin-1, -2, components

of desmosomes
Inactivated Loss of cell–cell contacts Unknown 67

E-cadherin Calcium-dependent adhesion
protein in adherens juctions

Inactivated Rather late cleavage may
contribute to disruption of cell–
cell contacts

DTRD (750) 68, 69

N-cadherin Calcium-dependent cell adhesion
protein

Inactivated Unknown 70

P-cadherin Cell adhesion protein in adherens
junctions

Inactivated? Rather late cleavage may be
involved in loss of cell–cell
contacts

Putative site: ETAD (695) 69

FAK Focal adhesion kinase, tyrosine
kinase involved in formation of
contact sites to extracellular matrix

Inactivated Cleavage leads to disassembly
of the focal adhesion complex,
cell detachment and
interruption of survival signals

DQTD (772) 71–74

HEF1 Human enhancer of filamentation 1,
member of the docking protein
family, involved in integrin signaling

Inactivated Disruption of antiapoptotic
integrin signaling

DLVD (363), DDYD (630) 75, 76

Connexin 45.6 Lens gap junction protein Inactivated Cleavage at a noncanonical
site; phosphorylation by casein
kinase II prevents degradation

DEVE (367) 77

Paxillin Component of the focal adhesion
complex

Inactivated Cleavage results in focal
adhesion disassembly and
detachment

Early: NPQD (102), SQLD
(301)

78, 79

Late: DDLD (5), SELD (146),
FPAD (165), SLLD (222)

Plakophilin-1 Component of desmosomes Inactivated Loss of cell–cell contacts Unknown 67

3. Cytoskeletal and structural proteins
a-Actin Cardiac actin, myofilament protein Inactivated Rather inefficient cleavage by

caspase-3, involved in
myofibrillar damage

Unknown 80
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b-Actin Cytoskeleton Inactivated Cleavage has not been
observed in all cell types

ELPD (244) 7–9, 81

a-Actinin Cardiac myofilament protein,
component of the Z band

Inactivated Cleavage results in myofibrillar
damage

Unknown 80

a-Adducin Actin-capping protein involved in
actin network organization

Inactivated Cleavage results in loss of
adducin from adherens
junctions and may contribute to
cell detachment

DDSD (633) 82

CD-IC Cytoplasmic dynein intermediate
chain, mediates dynein/dynactin
interaction

Inactivated Cleavage destroys the
cytoplasmic dynein complex
and stops dynein-dependent
membrane motility

DSGD (99) and an additional
unknown site

83

Cortactin Actin-binding and SH3-containing
protein

Inactivated? Probably involved in
cytoskeletal reorganization

Unknown 84

Filamin Actin-binding protein that crosslinks
actin filaments and anchors
membrane proteins to the
cytoskeleton

Inactivated Probably involved in
cytoskeletal reorganization

Unknown 85, 86

Fodrin Component of the membrane
cortical cytoskeleton (syn. a II-
spectrin)

Inactivated Cleavage results in disruption
of the cortical cytoskeleton and
may contribute to membrane
blebbing

a-II-Fodrin: DETD (1185)

b-II-Fodrin: DEVD (1457) 87–90

Gas2 Growth-arrest-specific 2 gene,
involved in microfilament
organization

Inactivated Cleaved form specifically
regulates microfilament and
cell shape changes

SRVD (37) 91

Gelsolin Actin-severing protein Inactivated Cleaved fragment triggers F-
actin depolymerization and
membrane blebbing

DQTD (403) 92, 93

HIP-55 Actin-binding protein with SH3
domain, interacts with
hematopoietic progenitor
kinase-1

Inactivated? Cleavage dissociates the actin
binding from the SH3 domain
and leads to cytoskeletal
reorganisation

EHID (361) 84

HS1 Hematopoietic-specific protein 1
(syn. Lck-binding protein)

Inactivated? Probably involved in
cytoskeletal reorganization

Unknown 84

Keratins Cytokeratin-14, -17, -18, -19,
intermediate filament proteins

Inactivated Cleavage may contribute to
cellular collapse

Keratin 18: VEVD(238), DALD
(397)

94–97

MHC Myosin heavy chain Inactivated? Identified by 2D gel
electrophoresis, not confirmed
by in vitro cleavage

Unknown 3

vMLC Ventricular essential myosin light
chain, cardiac myofilament protein

Inactivated Cleavage at a noncanonical
site results in myofibrillar
damage, presumably involved
in contractile dysfunction

DFVE (135) 98

p150Glued Mediates dynein/dynactin
interaction

Inactivated Cleavage destroys the
cytoplasmic dynein complex
and stops dynein-dependent
membrane motility

Unknown 83

Plectin Abundant crosslinking protein of
cytoplasmic filament systems

Inactivated Reorganization of the
microfilament sytem

ILRD (2395) 99

b-Spectrin Component of the membrane
cortical cytoskeleton

Inactivated Cleavage results in disruption
of cortical cytoskeleton and
may contribute to membrane
blebbing

DSLD (1478), DEVD (1457),
ETVD (2146)

100

Tau Neuronal microtubule-associated
protein

Inactivated Cleavage generates a
proapoptotic fragment, may be
involved in neuronal disorders

DMVD (421) 101, 102

Troponin T Cardiac troponin, myofilament
protein

Inactivated Cleavage contributes to
myofibrillar damage and
contractile dysfunction

VDFD (96) 80

a-Tubulin Component of microtubuli Inactivated? Identified by 2D gel
electrophoresis, not confirmed
by in vitro cleavage

Unknown 3

Vimentin Intermediate filament specific for
mesenchymal cells

Inactivated Disruption of intermediate
filaments and promotion of
apoptosis

DSVD (85), IDVD (259), TNLD
(429)

103, 104

4. Nuclear structural and abundant proteins
Emerin Nuclear membrane-anchored

protein mutated in Emery–Dreifuss
muscular dystrophy, related to
LAP2a

Inactivated Cleavage may contribute to
nuclear envelope breakdown

Unknown 105

LBR Lamin B receptor; chromatin and
lamin-binding protein in the inner
nuclear membrane

Inactivated Nuclear lamina disassembly Unknown 106

Lamin A Nuclear envelope protein Inactivated Nuclear lamina disassembly VEID (230) 107–109
Lamin B1 Nuclear envelope protein Inactivated Nuclear lamina disassembly VEVD (231) 109
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Lamin C Nuclear envelope protein Inactivated Nuclear lamina disassembly VEID (230) 109
LAP2a Lamin-associated polypeptide 2a,

involved in nuclear structure
organization

Inactivated Impaired chromatin-binding
properties

Putative sites: KRID (413),
EERD (441), SQHD (483)

110

Nup153 Nucleoporin 153, component of the
nuclear pore and binding site for
importin-�

Inactivated Impaired nuclear transport,
redistribution of importins

DITD (343) 111, 112

Nup214 Nucleoporin 214, binding site for
exportin

Inactivated Impaired nuclear transport Unknown 112

RanBP2 (Nup358) Nucleoporin 358, Ran-binding
protein-2 with SUMO E3 ligase
activity

Inactivated Impaired nuclear transport Unknown 112

SAF-A Scaffold attachment factor-A, DNA-
binding protein involved in nuclear
matrix stabilization

Inactivated Loss of DNA binding and
detachment from nuclear
structural sites

SALD (100) 113, 114

SATB1 Special AT-rich sequence-binding
protein 1, T-cell-specific DNA-
binding protein for nuclear matrix-
associating DNAs, involved in gene
expression

Inactivated Cleaved protein dissociates
from chromatin, may be
involved in high molecular
weight DNA fragmentation

VEMD (254) 115, 116

Tpr Nuclear pore-associated filament
protein; binding site for importin-b

Inactivated Impaired nuclear transport Putative sites: DSQD (1892),
DGTD (1999), DDED (2117),
DDGD (2250), DESD (2285)

112

5. ER and Golgi-resident proteins
p28BAP31 Bcl-2 adaptor at the ER, originally

identified as B-cell receptor-
associated protein

Inactivated BAP31 is cleaved by and
recruits caspase-8 to the ER.
Expression of cleaved product
is proapoptotic and causes
disturbed transport of proteins
from ER to Golgi

AAVD (164) 117–119

Golgin-160 Golgi autoantigen, Golgin-3
(GOLGA3), located at the rims of
cisternas

Inactivated Cleavage by caspase-2 results
in disintegration of the Golgi
complex

ESPD (59), CSTD (139), SEVT
(311)

120

GRASP65 Golgi reassembly and stacking
protein of 65 kDa

Inactivated Golgi disassembly and loss of
integrity

SLLD (320), SFPD (375), TLPD
(393)

121

Kinectin ER-resident receptor for molecular
motor kinesin, involved in micro-
tubule-based vesicle transport

Unknown Preferentially cleaved by
caspase-7

Unknown 122

6. Cell cycle
c-Abl Tyrosine kinase involved in cell

cycle arrest
Inactivated Cleavage-mediated

inactivation may suppress
erythropoiesis

Putative sites: DTTD (546),
DTAD (655)

123

Bcr-Abl Constitutively active fused gene
product of c-Abl and Bcr in chronic
myeloid leukemia

Inactivated See c-Abl 123

Cdc6 Required for prereplicative complex
formation

Inactivated Cleavage results in loss of
chromatin binding

LVRD (99 ), SEVD (442) 124

CDC27 Cdc2 and Cdk-inhibitory kinase of
the anaphase-promoting complex

Inactivated Cleavage results in increased
Cdk activity

Unknown 35

Cyclin A Xenopus cyclin A Inactivated The cleavage site of Xenopus
Cyclin A2 is not present in
mammals

DEPD (90) 10

Cyclin E Regulator of G1/S cell cycle
progression

Inactivated Elimination of Cdk2 interaction,
results in inactivation of cdk
kinase. Overexpression of the
p18 fragment triggers
apoptosis

Unknown 125

MDM2/HDM2 Mouse/human double minute
chromosome oncogene 2, controls
degradation of p53

Inactivated The cleaved MDM2 loses the
ability to promote p53
degradation and functions in a
dominant-negative fashion to
stabilize p53

DVPD (361) 126, 127

MDMX p53-binding protein homologous to
MDM2, which promotes
degradation of p53.

Inactivated In analogy to MDM2, cleaved
MDMX does not degrade p53
and functions in a dominant-
negative fashion to stabilize
p53

DVPD (361) 128

NuMA Nuclear mitosis apparatus protein,
translocates to spindle poles at
mitosis

Inactivated Cleavage causes redistribution
of NuMA and contributes to
nuclear disruption

DSLD (1712) 129, 130

p21Waf1 Cdk2 inhibitor involved in G1/S
arrest

Inactivated Loss of N-terminal cdk-
inhibitory domain results in a
reduced association with
cyclin-cdk2 complexes and
increased cdk2 activity

DHVD (112) 131, 132
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p27Kip1 Cdk2 inhibitor Inactivated Cleavage results in reduced
association with cyclin-cdk2
complexes and increased cdk2
activity

DPSD (139), ESQD (108) 132, 133

PITSLRE Cell cycle-regulatory cdc2-like
kinase

Activated? Several isoforms are cleaved
and presumably activated
Expression of a fragment-like
mutant induces apoptosis

YVPD (391) 134, 135

Prothymosin-a Involved in cell proliferation Inactivated Cleavage prevents nuclear
localization, proliferation-
inducing ability is abolished

Three overlapping sites at the
C-terminus: DDEDDDVD(101)

136, 137

Rb Retinoblastoma protein,
phosphorylation-controlled cell
cycle regulator that binds to E2F-1

Inactivated Rb is cleaved in its
hypophosphorylated form
which results in unopposed
E2F-1 action and reduced
antiapoptotic activity

DEAD (886) 138

Wee1 Inhibitory kinase of cdc2 and cdk2 Inactivated Cleavage-mediated inhibition
results in elevated cdk activity

Unknown 35

7. DNA synthesis, cleavage and repair
Acinus ‘Apoptotic chromatin condensation

inducer in the nucleus’
Activated Essential mediator of chromatin

condensation
DELD (1093) 12

ATM Ataxia telangiectasia mutated
protein; kinase involved in the p53
DNA repair pathway

Inactivated Cleavage abrogates kinase
activity. Fragment is DNA
binding and functions as a
dominant-negative inhibitor

DYPD (863) 139

BLM RECQ-like helicase, defective in
Bloom’s syndrome, involved in
DNA replication and repair

Inactivated Fragment retains helicase
activity, albeit interaction with
topoisomerase IIIa is impaired

TEVD (415) 140, 141

BRCA-1 Breast cancer suppressor protein,
mediates cell cycle arrest and DNA
repair

Inactivated Expression of a noncleavable
BRCA-1 attenuates apoptosis

DLLD (1154) 142

DNA-PKcs DNA-dependent protein kinase
catalytic subunit; involved in repair
of DNA breaks and nucleotide
excision repair

Inactivated Loss of catalytic activity DEVD (2713) 143, 144

ICAD Inhibitor of caspase-activ-
ated DNase (syn. DFF45)

Inactivated Cleavage liberates the active
CAD endonuclease

DETD (117), DAVD (224) 145, 146

Helicard CARD-containing DNA helicase Activated Involved in chromatin
remodeling. Cleavage
separates the CARD from the
helicase domain and induces
nuclear translocation

DNTD (208), SCTD (251) 147

MCM3 ‘Minichromosome maintenance
protein 3’, replication factor of the
MCM complex, restricts replication
to one round per cell cycle

Inactivated Probably destruction of the
MCM complex, prevention of
replication

Unknown 148

PARG Poly(ADP-ribose) glycohydrolase;
removes poly(ADP-ribose)
residues from proteins

Unknown Cleavage does not alter
enzymatic activity

DEID (256), MDVD (307) 149

PARP-1 Poly(ADP-ribose) polymerase-1;
involved in DNA repair and gene
expression

Inactivated Cleavage results in loss of
catalytic activity and may
prevent depletion of ATP which
is required for apoptosis.

DEVD (214) 24, 150–152

PARP-2 Poly(ADP-ribose) polymerase-2;
involved in DNA repair

Inactivated Cleavage between DNA
binding and catalytic domain

LQMD (186) 153

Pol e DNA polymerase epsilon
(Pol e) catalytic subunit

Inactivated Cleavage dissociates the N-
terminal catalytic core from the
C-terminus; can no longer bind
PCNA or other Pol e subunits

DQLD (189), DMED (1185) 154

RAD21 Component of the cohesin complex Inactivated Proapoptotic cleavage product DSPD (279) 155
RAD51 Human recombinase HsRad51

(homologous to RecA). Involved in
homologous recombination and
DNA repair

Inactivated Cleavage products lack
recombinase activity

DVLD (187) 156

RFC140 Replication factor C (syn. DSEB),
DNA-dependent ATPase of the
replication factor complex, involved
in DNA replication and repair

Inactivated Cleavage separates the DNA
binding from its association
domain and impairs DNA
replication

DEVD (722) 157–159

Topo I Topoisomerase I, breaks and
rejoins DNA single strands

No effect? Unconventional cleavage sites.
Fragment still binds and
cleaves DNA

PEDD (123), DDVD (146),
EEED (170)

160, 161

Topo IIa Topoisomerase IIa Unknown Unknown 162
XRCC4 X-ray repair, complementing

defective, in Chinese hamster 4;
involved in DNA double-strand break
repair and V(D)J recombination

Inactivated Inhibition of DNA repair Unknown 163
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8. DNA-binding and transcription factors
AP-2a Inducible transcription factor Inactivated Loss of DNA-binding activity DRHD (19) 164
CREB cAMP response element-binding

protein
Inactivated Antiapoptotic function is

abolished
Putative site: ILND (140) or
LSSD (144)

165

c-Rel NF-kB subunit Inactivated Loss of transcriptional activity Unknown 166
GAL4 Yeast transcription factor used in

two-hybrid assays
Inactivated Cleavage results in loss of

transcription in reporter gene
assays

Unknown C-terminal cleavage
sites

167

GATA-1 Erythropoietic transcription factor Inactivated Loss of transcriptional activity
results in
impaired erythroblast
development

EGLD (42), EDLD (125), LSPD
(144)

168

HSF Heat shock factor Inactivated Protective induction of heat
shock response genes is
abolished

Unknown 169

hTAF(II)80 d Specialized isoform of basal
transcription factor TFIID subunit
hTAF80

Unknown Elevated expression of
hTAF(II)80 d triggers apoptosis

Unknown 170

IkBa Inhibitor of NF-kB Activated Cleavage generates a
constitutive inhibitor

DRHD (32) 171

LEDGF Lens epithelium-derived growth
factor, transcriptional coactivator

Inactivated Cleavage abolishes survival
function

EVPD (30), WEID (85), DAQD
(486)

172

Max Myc-associated factor Inactivated Cleavage by caspase-5 and -7
at an unusual glutamic acid
residue

IEVE (10), SAFD (135) 19

MEF2A, C, D Myocyte enhancer factor 2,
isoforms A, C and D

Inactivated Caspase cleavage generates a
proapoptotic fragment with
decreased transcriptional
activity

MEF2A: SSYD (466), 173, 174
MEF2C: SSYD (422),
MEF2D: LTED (288), DHLD
(291)

NF-kB p50 Subunit of NF-kB Inactivated Loss of DNA binding Unknown 175
NF-kB p65 Subunit of NF-kB (RelA) Inactivated Cleavage generates a

dominant-negative
proapoptotic fragment

VFTD (465) 175, 176

NRF2 Basic leucine-zipper transcription
factor of the NF-E2 family; binds to
antioxidant response elements

Inactivated Overexpression of C-terminal
fragment induces apoptosis;
gene induction of detoxifying
enzymes is abolished

TEVD (208), EELD (366) 177

PML-RARa Fused oncogenic transcription
factor in acute promyelocytic
leukemia

Inactivated Cleavage results in retargeting
of PML to nuclear bodies

PHLD (523) 178, 179

RARa Retinoid acid receptor-a Inactivated Loss of transcriptional activity Unknown 179
Relish Drosophila NF-kB homolog

involved in innate immunity
Inactivated Loss of transcriptional activity Unknown 180

Sp1 Constitutive transcription factor Inactivated DNA-binding activity abolished NSPD (590) 181
SREBP-1/-2 Sterol-regulatory element-binding

protein-1/-2 involved in cholesterol
metabolism

Activated Nonphysiological cleavage by
caspases

SREBP-2: DEPD (468) 182

SRF Serum response factor Inactivated DNA binding abolished; loss of,
for example, c-fos expression

Unknown 183

STAT1 Signal transducer and activator of
transcription-1

Inactivated Blockade of interferon and
other cytokine signaling

MELD (694) 184

9. RNA synthesis and splicing
BTF3 Transcription initiation factor of

RNA polymerase II
Unknown Identified by 2D gel

electrophoresis and in vitro
cleavage

Putative site: QSVD (175) 4

hnRNPs (A0, A2/
B1, A3, C1, C2, I,
K, R)

Hetergeneous nuclear
ribonucleoproteins involved in pre-
mRNA-splicing and transport

Inactivated Reduced RNA processing hnRNP A1/B2: SYND (262),
putative site.

2, 4, 185, 186

hnRNP A2/B1: KLTD (49),
VMRD (55), AEVD (76),
putative sites.
hnRNP C1, C2: NKTD (10),
EGED (295), DDRD (298),
GEDD (305), putative sites.
hnRNP I: IVPD (7), LKTD (139),
AAVD (172).
hnRNP R: RAID (66) and DYYD
(472) or KESD (87) and DYHD
(481), putative sites

KHSRP KH-type splicing regulatory protein
(syn. FUSE-binding protein 2), part
of a complex that binds to an
intronic splicing enhancer

Unknown Identified by 2D gel
electrophoresis and in vitro
caspase-3 cleavage

Putative sites: IRKD (72),
AFAD (76), IGGD (91), STPD
(102), QLED (114), EDGD
(116), SQGD (128)

4

NONO/ p54nrb Non-Pou domain-containing
octamer-binding protein (syn.
nuclear RNA-binding protein 54-
kD, p54nrb), splicing factor

Unknown Identified by 2D gel
electrophoresis and in vitro
caspase-3 cleavage

Putative site: MMPD (421) 4
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NS1-associated
protein1

RNA-binding protein that interacts
with the nonstructural NS1
parvovirus protein

Unknown Identified by 2D gel
electrophoresis

Unknown 4

Nucleolin Abundant protein, involved in rRNA
transcription, ribosome maturation
and assembly

Unknown Putative sites: TEID (455), and
AMED (629) or GEID (633)

2, 4

RHA RNA helicase A, mediates inter-
actions between RNA polymerase
II and transcription factors

Inactivated Cleavage results presumably in
reduced transcription of
particular genes

EEVD (167) 187, 188

SFRS1 Member of the SR (serine- and
arginine-rich) family of non-snRNP
splicing factors, (syn. alternative
splicing factor-2 or SRp30a)

Unknown Identified by 2D gel
electrophoresis and in vitro
caspase-3 cleavage

Putative sites: DLKD (139),
CYAD (151), VYRD (155),
RKLD (176)

4

SFRS9 Member of the SR (serine- and
arginine-rich) family of non-snRNP
splicing factors, involved in
alternative splicing (syn. SRp30c)

Unknown Identified by 2D gel
electrophoresis

Putative site: GWAD (6) 4

SRPK1 Serine/arginine splicing factor
protein kinase 1

Inactivated? Unknown See Utz and
Anderson189

SRPK2 Serine/arginine splicing factor
protein kinase 2

Inactivated? Unknown See Utz and
Anderson189

SS-B/La-
autoantigen

Involved in RNA biogenesis;
Sj

¨
ogren’s syndrome autoantigen

Inactivated Cleavage presumably results in
disturbed Pol III transcription

DEHD (371) or DEHD (374) 190

U1-70-kDa snRNP Component of the U1 small nuclear
ribonucleoprotein complex,
involved in pre-mRNA-splicing

Inactivated Reduced RNA processing DGPD (341) 191–193

10. Protein translation
60S acidic
ribosomal protein
P0

Component of the ribosome Unknown Identified by 2D gel
electrophoresis, not confirmed
by in vitro cleavage

Putative sites: PRED (5), EESD
(308), SDED (310)

2, 4

DAP5 Death-associated protein 5 (syn.
p97, NAT1); member of the eIF4G-
family

Activated Cleavage product stimulates
translation from the IRES sites
of c-Myc, Apaf-1, DAP5 and
XIAP, supporting translation of
apoptosis-related proteins

DETD (792) 17, 194

eIF2a Eukaryotic translation initiation
factor 2a

Inactivated? Generation of C-terminally
truncated protein might result in
protection of protein synthesis
from PKR-mediated
phosphorylation of eIF2a

AEVD (301) or DGDD (304) 195, 196

eIF3 p35 subunit of translation initiation
factor eIF3

Inactivated? DLAD (242), DYED (256) 197

eIF4B Eukaryotic translation initiation
factor 4B

Inactivated Generation of N-terminal
truncated cleavage product,
loss of poly(A)-binding and
translation

DETD (45) 197, 198

eIF4E-BP1 Eukaryotic translation initiation
factor 4E-binding protein 1

Inactivated Fragment functions as a
dominant-negative inhibitor of
CAP-dependent translation

VLGD (25) 197, 199

eIF4GI Eukaryotic translation initiation
factor 4GI, binds to the 50 cap
structure of mRNAs and facilitates
binding of capped mRNA to 40S
ribosomal subunits

Inactivated Inhibition of translation DLLD (492), DRLD (1136) 200–202

eIF4GII Eukaryotic translation initiation
factor 4GII, binds to the 50 cap
structure of mRNAs and facilitates
their binding to 40S ribosomal
subunits

Inactivated Shut-off of cap-dependent
translation

Unknown 197, 203–205

NACa Nascent polypeptide-associated
complex a; subunit of a complex
that binds newly synthesized
polypeptides and prevents them
from incorrect translocation to the
ER

Unknown Identified by 2D gel
electrophoresis

Unknown 4

PABP4 Poly(A)-binding protein 4 required
for poly(A) shortening and
translation initiation

Unknown Identified by 2D gel
electrophoresis

Unknown 4

SRP72 72-kDa signal recognition particle
protein

No effect? Cleaved SRP72 still transports
signal peptide-containing
proteins to the ER

SELD (614) 206

11. Cytokines
pro-IL-1b Interleukin-1� precursor Activated Essential proinflammatory

mediator
YVHD (116) 207–209

pro-IL-16 Interleukin-16 precursor Activated Induces T-cell chemotaxis SSTD (510) 210
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pro-IL-18 IFN-g-inducing factor Activated Induces IFN-g production LESD (36) 211–213
pro-EMAP-II Endothelial monocyte-activating

polypeptide-II
Activated Pro-EMAP-II is identical to the

p43 component of the
aminoacyl-tRNA synthetase
complex

Mouse: ASTD (144) 214, 215

Human: site not conserved

12. Membrane Receptors
DCC Deleted in colorectal cancer, tumor

suppressor gene
Inactivated Cleavage product is

proapoptotic
LSVD (794) 216

EGF-R Epidermal growth factor receptor Inactivated Cleavage inactivates EGF-R
and triggering of survial signals

Putative sites: DEED (1006),
DMDD (1009)

217

ErbB-2 Receptor tyrosine kinase, functions
as a coreceptor with ligand-
occupied members of the EGF
receptor, ErbB-3 or -4

Inactivated? Cleavage of the cytoplasmic
part presumably deletes
signaling capacity

SETD (45) 218

Glutamate receptor Receptor family involved in
neurotransmission

Inactivated Cleavage of the glutamate
receptor subunits GluR1, 2, 3, 4
, but not of NMDA receptor
subunits results in modified
responsitivity to glutamate

Asp 865 219, 220

RET Tyrosine kinase receptor, proto-
oncogene involved in Hirschsprung
disease and multiple endocrine
neoplasia
type 2

RET induces apoptosis via its
own cleavage by caspases
through the liberation of a
proapoptotic domain of RET

VSVD (707), DYLD (1017) 221

TCR z T-cell receptor zeta chain Inactivated Cleavage of the cytoplasmic
part results in loss of z chain
expression

GLLD (28) or YLLD (36), and
DTYD (153)

222

TNF-R1 Tumor necrosis factor receptor-1
(p60)

Inactivated Cleavage of the cytoplasmic tail
at a nonconsensus motif by
caspase-7

GELE (260) 223

13. Adapter proteins
GrpL/Gads Adapter of the Grb2 family in

hematopoietic cells, couples to the
T-cell receptor and SLP-76 to
regulate transcription factors such
as NF-AT

Inactivated Deletion of the C-terminal SH3
domain prevents recruitment of
SLP-76 and leads to
desensitization of antigen
receptor signaling

DIND (235) 224, 225

TRAF1 TNF-R-associated factor 1 Inactivated C-terminal cleavage product
blocks NF-kB activation and
promotes apoptosis

LEVD (163) 226–228

TRAF3 TNF-R-associated factor 3 Inactivated? Altered cellular distribution of
the cleavage product

EEAD (348), ESVD (368) 229

TXBP151 HLTLV-1 Tax-binding protein,
antiapoptotic A20-binding protein

Inactivated Loss of antiapoptotic effect of
TXBP15

Unknown 230

14. Tyr protein kinases
ETK/BMX Member of the Btk/Tec family of

kinases
Activated Overexpression of the fragment

induces apoptosis
ETK: DFPD (242) and a second
unknown site

231

Fyn T-cell Src kinase Activated Removal of N-terminal
myristoylation sites leads to
relocalization and increased
activity

EERD (19) 232, 233

Lyn B-cell Src kinase Activated Removal of N-terminal
myristoylation sites
leads to relocalization
and increased
activity

DGVD (18) 233

Src pp60(c-Src), proto-oncogene Inactivated? Antiapoptotic effect is
abolished

Unknown 234

15. Ser/Thr-Protein kinases in signal transduction
AKT Important survival kinase (syn.

PKB)
Inactivated Loss of kinase activity and

antiapoptotic function
TVAD (108), EEMD (119),
ECVD (462)

235–238

CaMK IIa Calcium/calmodulin-dependent
kinase IIa

Inactivated? Effect on kinase activity not
tested

Unknown 239

CaMK IV Calcium/calmodulin-dependent
kinase IV

Inactivated Cleavage within catalytic
domain results in loss of activity

YWID (31), PAPD (176) 239

CaMKK CaMK kinase Inactivated? Effect on kinase activity not
tested

Unknown 239

CaMKLK Ca2+/calmodulin-dependent protein
kinase (CaMK)-like kinase

Dysregulated C-terminal fragment retains
kinase activity, while N-terminal
fragment promotes apoptosis

Rat: DEND (62), (Human,
mouse: putative DEND site at
369)

240

HPK-1 Hematopoietic progenitor kinase-1,
Ste20-related protein kinase

Dysregulated Proapoptotic cleavage
converts an activator into an
inhibitor of NF-kB, product fails
to bind to Grb2

DDVD (385) 241, 242
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MASK Mst3 and SOK1-related kinase
(MASK) of the germinal center
kinase family

Activated Proapoptotic, if overexpressed DESD (305) 243

MEK MAP kinase kinase Inactivated Direct cleavage by caspases
uncertain. Proteolysis results in
reduced Erk1/2
phosphorylation

Unknown 244

MEKK1 MEK kinase-1; involved in stress
signaling

Activated Cleavage product is
constitutively active,
intracellularly redistributed and
proapoptotic

Mouse: DTVD (874) (Human
and rat: not conserved)

245–247

Mst1 Mammalian STE20-related kinase-
1 (Krs2); involved in stress
signaling

Activated Removal of C-terminal
regulatory domain results in
constitutive activity,
relocalization and activation of
stress kinases and caspases.

DEMD (326) 248–250

Mst2 Mammalian STE20-related kinase
(Krs1), involved in stress signaling

Activated Cleavage results in a
constitutively active kinase

DELD (322) 250

Mst3 Mammalian STE20-related kinase,
involved in stress signaling

Activated Cleavage results in a
constitutively active kinase.
Overexpression of the C-
terminal kinase fragment
induces apoptosis.

AETD (313) 251

PAK2 P21-activated kinase 2 (syn.
PAK65; PAKg)

Activated Constitutive activation by
separation of N-terminal
regulatory and C-terminal
catalytic domain, induces
apoptotic morphology

SHVD (212) 252, 253

PKC d Protein kinase C delta Activated Constitutively active kinase,
proapoptotic

DMQD (329) 254, 255

PKC e Protein kinase C epsilon Activated Constitutively active kinase Human: SSPD (383), Mouse:
SATD (383)

256–258

PKC Z Protein kinase C eta Activated Kinase-active fragment is
proapoptotic

Unknown site in or upstream of
the V3 region

259

PKC m Protein kinase C mu Activated Increased sensitivity to
genotoxic stress

CQND (378) 260, 261

PKC y Protein kinase C theta Activated C-terminal fragment is
constitutively active and
proapoptotic

DEVD (354) 257, 262

PKC z Protein kinase C zeta Activated Constitutively active kinase EETD (210), DGVD (239) 256, 263, 264
PKR Double-stranded RNA-dependent

protein kinase, involved in antiviral
response

Activated Caspase-dependent activation
leads to eIF2-a phosphorylation
and translation inhibition

DLPD (251) 265

PRK1 PKC-related kinase-1 (syn. PKN) Activated Constitutively active kinase Unknown 266
PRK2 PKC-related kinase-2 Activated? Proapoptotic; C-terminal

fragment inhibits AKT and
PDK-1

DITD (117) 5, 267

Raf-1 ‘Ras-associated factor 1’, important
kinase in mitogenic signaling

Inactivated Cleavage results in loss of Raf-
1 antiapoptotic function

Unknown 235

RIP-1 Receptor-interacting kinase-1,
component of the TNF-R1 DISC

Inactivated Proapoptotic cleavage by
caspase-8 results in inhibition
of NF-kB activation

LQLD (324) 268, 269

ROCK-1 Rho-associated kinase-1 Activated Caspase-mediated activation
results in activation of myosin
light chain kinase and
membrane blebbing

DETD (1113) 270, 271

SLK STE20-related kinase, JNK-
pathway

Activated Two cleavage products with
distinct activities: N-terminal
kinase promotes apoptosis and
cytoskeletal rearrangement,
the
C-terminal fragment
disassembles actin
fibers

Mouse: DTQD (436) (site not
conserved in human)

272

SPAK STE20/SPS1-related, proline
alanine-rich kinase of STE20
kinase family

Unknown Rat: DEMD (398) 273
Human: DEMD (392)
Mouse: DEMD (402)

p70S6K p70 form of S6 kinase Inactivated Direct cleavage by caspases
uncertain

Unknown 274

16. Protein phosphatases
Calcineurin Calmodulin-dependent

phosphatase involved in NFAT
activation and cytokine synthesis

Activated Caspase-mediated constitutive
activation triggers NF-AT
activation and IL-2 release

DFGD (386) 275, 276

PP2A Protein phosphatase 2A Activated Caspases cleave regulatory al-
subunit of PP2A and increase
its activity

DEQD (218) 277
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17. Protein modification
FTase Farnesyltransferase, attaches

farnesyl groups to cysteine
residues of proteins

Inactivated Cleavage of a-subunit
(common to FTase and
GTTase), expression of
cleavage product induces cell
death

VSLD (59) 278

GGTase I Geranylgeranyltransferase I,
attaches geranylgeranyl groups to
cysteine residues

Inactivated Cleavage of a-subunit
(common to FTase and
GGTase), expression of
cleavage product induces cell
death

VSLD (59) 278

O-GlcNAase b-O-linked-N-
acetylglucosaminidase; releases
O-GlcNAc residues from peptides

No effect Cleavage has no effect on
enzyme activity in vitro

Unknown 279

tTG Tissue transglutaminase (TG-2)
crosslinks proteins and assembles
scaffolds that prevent leakage of
intracellular components

Inactivated Cleaved late in apoptosis,
results in loss of crosslinking
activity

Unknown 280

18. Protein degradation
Calpastatin Calpain inhibitor Inactivated Decreased inhibition of calpain ALDD (137), LSSD (203),

ALAD (404)
281, 282

Cbl Adapter protein with ubiquitin ligase
activity, negative regulator of T-cell
activation, downregulates receptor
tyrosine kinases by ubiquitinylation

Unknown Unknown 235

Cbl-b Cbl-related protein with ubiquitin
ligase activity, downregulates
receptor tyrosine kinase and PI3K
signaling

Unknown Unknown 235

Nedd4 ‘Neural-expressed
developmentally downregulated
gene4 protein’, ubiquitin protein
ligase

Unknown Cleavage products do not affect
apoptosis, enzyme activity of
NEDD4 presumably not
impaired

DQPD (206) 283

PA28g Proteasome activator 28 g-subunit Unknown DGLD (80) 284
PAI-2 Plasminogen activator inhibitor

type 2
Inactivated Function as putative

cytoprotective protease
inhibitor may be
abolished

Unknown 285

UFD2 Ubiquitin fusion degradation
protein-2, with E3 ligase activity

Inactivated E3 activity is abolished in vitro MDID (109), VDVD (123) 286

19. G protein signaling
Cdc42 Ras-related GTP-binding protein,

provides survival signals and
controls cytoskeletal architecture

Inactivated Antiapoptotic function
abolished. Mutation of the
cleavage site of Cdc42
provides protection

DLRD (121) 287

D4-GDI D4-GDP dissociation inhibitor (syn.
Rho-GDI 2; Ly-GDI), inhibitor of
Rho GTPases

Inactivated Cleavage product translocates
to the nucleus, defective Rho
GTPase signaling

DELD (19) 288, 289

Rabaptin-5 Small GTPase, rate-limiting
component in membrane fusion in
the early endocytotic pathway

Inactivated Cleavage blocks endosome
fusion

DESD (438) 290

Rac Ras-related GTP-binding protein Inactivated? DLRD (121) 287
Ran-GAP1 Ran GTPase activating protein 1,

involved in nuclear transport
Unknown May be involved in alterations

of nuclear pore transport.
Cleavage not confirmed in vitro

Unknown 291

Ras-GAP Ras GTPase-activating protein Activated,
inactivated

Limited caspase cleavage: N-
terminal fragment is
antiapoptotic by activating the
PI3K pathway. Increased
caspase levels: further
cleavage into two proapoptotic
fragments

DEGD (157), DTVD (459) 235, 292, 293

TIAM1 Rac-specific guanine nucleotide
exchange factor

Inactivated Functional inactivation, cannot
stimulate GDP loading of Rac

DETD (993) 294

Vav-1 Hematopoietic proto-oncogene,
guanine nucleotide exchange
factor

Inactivated Fails to induce IL-2
transcription; diminished
capacity to activate AP-1, NF-
kB, NF-AT; can still activate
JNK; but not p38

DQID (150), DLYD (161) 295

20. Calcium, c-AMP, c-GMP and Lipid metabolism
CCT-a CTP : phosphocholine

cytidylyltransferase a, involved in
phosphatidyl choline synthesis

Activated Cleavage results in nuclear
export

TEED (28) 296
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IP(3)R-1/-2 Inositol 1,4,5-triphosphate
receptor-1 and -2

Inactivated Decrease in IP(3)-gated Ca2+

channel activity
Mouse IP(3)R-1: DEVD (1892) 297–299

PIP5K-Ia Phosphatidylinositol phosphate 5-
kinase-I a, synthesizes
phosphatidyl-inositol 4,5-
bisphosphate which inhibits
caspases

Inactivated Inactivation contributes to
progression of apoptosis

DIPD (279) 300

PDE4A5 cAMP-specific phosphodiesterase
4A5

Dysregulated Cleavage removes SH3-
binding domain and results in
altered intracellular targeting
and Lyn kinase interaction

Mouse: DAVD (72) 301

PDE5A1 cGMP-binding phosphodiesterase
5A1

Inactivated? Unknown 302

PDE6 cGMP-binding phosphodiesterase
6

Inactivated? Reduced cGMP-hydrolyzing
activity

Putative site: DFVD (167) 302

PDE10A2 cGMP-binding phosphodiesterase
10A2

Inactivated? Putative site: Rat: DLFD (315),
Human: DLFD (333)

302

PMCA-2 Neuron-specific plasma membrane
Ca2+ATPase isoform 2

Unknown Putative site: EEID (1072) 28

PMCA-4 Ubiquitous plasma membrane
Ca2+ATPase isoform 4

Inactivated/
activated?

Cleavage-mediated
inactivation may
result in calcium
overload and secondary
necrosis.

DEID (1080) 28, 303

iPLA(2) Calcium-independent
phospholipase A2

Activated Fragment accelerates
phospholipid turnover and
contributes to apoptotic
membrane changes

DVTD (183) 304

cPLA(2)a Cytosolic phospholipase A2 a (type
IVA), involved in arachidonic acid
metabolism

Inactivated Cleavage blocks PLA2 activity
and prevents production of lipid
mediators; may have
immunosuppressive function

DELD (336) 305, 306

PLC-g1 Phospholipase C-g1, involved in
mitogenic signaling

Inactivated Phosphorylated PLC is
resistant against cleavage.
Cleavage facilitates apoptosis

AEPD (770) 307

21. Neurodegeneration
Androgen receptor Polyglutamine tract protein,

defective in spinal bulbar muscular
atrophy (Kennedy’s disease)

Aggregates Aggregation of the truncated
protein may result in
neurodegeneration

DEDD (155) 308, 309

APLP1 Amyloid precursor protein-like
protein -1, related to APP

Aggregates? Cleavage generates a cytotoxic
C-terminal fragment similar to
C31 in APP

VEVD (620) 310

APP b-Amyloid precursor protein,
involved in Alzheimer’s disease

Cleavage results in generation
of the proapoptotic C-terminal
C31-peptide

VEVD (739) 31, 311

Ataxin-3 Polyglutamine tract protein
defective in spinocerebrellar ataxia
type 3

Aggregates Aggregation of the truncated
protein may result in
neurodegeneration

Putative sites: LISD (145),
DLPD (171), LDED (225),
DEED (228)

308, 312

Atrophin-1 Polyglutamine tract protein
defective in Dentatorubral
pallidalysian atrophy (syn. DRPLA
protein)

Aggregates Aggregation of the truncated
protein may result in
neurodegeneration

DSLD (109) 308, 312, 313

Calsenilin Member of the recoverin family of
calcium-binding proteins, interacts
with presenilins

Inactivated May be involved in Alzheimer’s
disease

DSSD (64) 314

Huntingtin Polyglutamine tract protein
defective in Huntington’s disease

Aggregates N-terminal fragment is cytotoxic
and triggers caspase activation

DSVD (513), DEED (530), IVLD
(586)

30, 315

Parkin Involved in Parkinson’s disease Inactivated Protein degradation abolishes
antiapoptotic function

LHTD (126) 316

Presenilin-1 Involved in Alzheimer’s disease Inactivated Cleavage abolishes interaction
with �-catenin and antiapoptotic
function

AQRD (345) 317, 318

Presenilin-2 Involved in Alzheimer’s disease Inactivated Cleavage abolishes interaction
with �-catenin and disables
antiapoptotic function

DSYD (329) 317–319

22. Viral proteins
Bcl-2 homologs Viral Bcl-2-homolog encoded by g-

Herpesvirus 68
No effect Unlike mammalian Bcl-2, most

viral Bcl-2 proteins are not
cleaved. g-HSV68 Bcl-2 is
cleaved, but not converted to a
proapoptotic form

DCVD (31) 50

CrmA Cytokine response modifier A,
serpin-like caspase inhibitor of
poxvirus

Activated Unlike IAPs, CrmA requires
peptide bond hydrolysis for
caspase-inhibitory action

LVAD (303) 320
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The search for caspase substrates has brought several
major questions into focus. For instance, is there a critical
death substrate or what is the minimal set of proteins that must
be cleaved in order to induce the phenotypic hallmarks of
apoptosis? How is caspase substrate cleavage coordinated
with other cellular processes, such as removal of dead
cells, or presumably unrelated events including cell prolifera-
tion and differentiation? Although the significance of cleavage
is not well understood for many substrates, the intense
study of caspase substrates has recently shed some light
on these questions. Here, we discuss several topics that
have emerged from the accumulating knowledge regarding
the role of caspase substrates in different biological
processes.

Key morphological alterations are deter-
mined by caspase substrate cleavage

For most proteins, the consequences of their cleavage are
poorly understood. In a few cases, however, proteolysis of

certain components can be linked to discrete morphological
changes of cell death. A classical example is the DNase
inhibitor ICAD. Cleavage of ICAD by caspase-3 liberates the
active CAD nuclease that mediates apoptotic DNA fragmen-
tation (for references, see Table 1). In addition, the cleavage
of acinus and helicard, a DNA helicase, contributes to
chromatin condensation and nuclear remodeling. The clea-
vage of several other substrates, including gelsolin as well as
the kinases ROCK-1 and PAK2, has been implicated in
membrane blebbing, a classical morphological feature.
Gelsolin is cleaved by caspase-3 to generate a constitutively
active fragment that can depolymerize F-actin. Gelsolin-
deficient neutrophils exhibit greatly delayed membrane
blebbing during apoptosis, implying that membrane blebbing
requires actin reorganization mediated by caspase-activated
gelsolin. Caspases also cleave and thereby activate ROCK-1
leading to the phosphorylation of myosin light chains, which
finally results in membrane blebbing.

Caspases destroy several proteins involved in maintenance
of the cytoskeletal architecture such as the intermediate
filaments cytokeratin-18 and vimentin, or Gas2 and plectin,

M2
(influenza A)

Virus-specific ion channel
membrane protein of influenza A
virus

Unknown Cleavage may attenuate virus
production

DVDD (88) 321

NP
(influenza A
and B)

nucleocapsid protein of influenza A
and B viruses

Unknown Cleavage may attenuate virus
production

Influenza A: METD (16), 321, 322
Influenza B: MDID (7), SEAD
(61)

NS5A
(HCV)

Nonstructural protein 5A of
hepatitis C virus

Unknown N-terminal deleted protein
translocates to the nucleus and
has transactivating function

Putative sites: TEVD (154),
SGVD (396)

323, 324

Nucleoporin
(TGEV)

Transmissible gastroenteritis
coronavirus (TGEV) nucleocapsid
protein

Unknown Cleavage may limit virus
production

VVPD (359) 325

p35 pancaspase inhibitor of baculovirus Activated Cleavage is required for
caspase inhibition by p35

DQMD (87) 326, 327

23. Other substrates
AHNAK Autoantigen in systemic lupus

Erythematosus. DNA-binding
phosphoprotein

Unknown Unknown 328

CPSII Carbamoyl phosphate synthetase
II, required for pyrimidine
nucleotide synthesis

Inactivated EAVD (1371) in catalytic B2
domain and VACD (1143) in
allosteric B3 domain

329

F1Aa Mammalian homolog of FEM-1
(syn. FEM1b), ankyrin repeat-
containing protein

Acitvated? F1Aa is proapoptotic and binds
to death reeptors in 2-hybrid
assays. Loses apoptosis-
inducing ability upon cleavage

DNID (342) 330

FEM-1 Involved in sex-specific cell
elimination in C. elegans,
necessary for male phenotype

Activated? Caspase cleavage promotes
apoptosis-inducing property of
FEM-1, which interacts with
Ced-4

ELLD (320) 331

FKBP46 FK506 binding protein 46, insect
nuclear immunophilin

Unknown Unknown 332

GCL Glutamate-L-cysteine ligase, rate-
limiting enzyme in glutathione
synthesis

Inactivated Cleavage of the catalytic
subunit results in loss of the
antioxidant glutathione

AVVD (499) 333

Hsp90 Unknown DEED (259) 96
PDC-E2 Pyruvate dehydrogenase complex

E2, autoantigen.
Unknown Cleavage confirmed by in vitro

caspase-3 cleavage
Unknown 334

SET b Product of the putative set
oncogene

Unknown SNHD (18) 335

aIf not otherwise indicated, the cleavage sites refer to the human sequence.
bDuring typesetting of this manuscript additional caspase substrates have been identified including the large subunit of RNA polymerase II,336 the vesicle-tethering
Golgi protein p. 115,337 the neuronal Ras-guanine nucleotide exchange factor GRASP-1,338 the hematopoietic transcription factor FL1-1,339 SRPK1 and SRPK2, two
kinases of the serine/argine splicing factors,340 the K10 retroviral polyprotein HERV-K10gag,341 adenovirus early region 1A proteins,342 and baculovirus apoptotic
suppressor protein p 49.343
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two proteins involved in filament organization. These clea-
vages may directly contribute to apoptotic changes in cell
shape. Caspases attack targets of the cortical actin network
such as fodrin, and several components of the focal adhesion
complex which links cortical actin filaments and membrane
proteins to the extracellular matrix. Examples of this kind of
substrates are focal adhesion kinase, Cas or paxillin.
Cleavage of these proteins presumably contributes to cell
shrinkage and cell detachment and, importantly, will interrupt
antiapoptotic integrin signaling. A large percentage of
caspase substrates are involved in cell adhesion or mediate
cell–cell commmunication in adherens and gap junctions, or in
desmosomes. Examples are b-catenin, E-cadherin, plakoglo-
bin or desmoglein.

In the course of apoptosis, disruption of the endoplasmic
reticulum and Golgi apparatus also takes place. Cleavage of
golgin-160 and GRASP65 was suggested to cause disas-
sembly of the Golgi complex, and proteolysis of Bap31
disrupts the transport between the ER and the Golgi complex.
During apoptosis, vesicle transport processes are also
impaired, for instance by the cleavage of rabaptin-5 or
kinectin.

Caspases initiate the destruction of the nucleus where a
huge variety of different proteins are cleaved. By 2D gel
electrophoresis it has been recently determined that approxi-
mately 70 nuclear matrix proteins are consistently degraded
or translocated during apoptosis, irrespective of the cell type
or apoptotic stimulus.13 Many cleavages lead to nuclear
lamina disassembly, and the cleavage of several components
of the nuclear pore results in impaired nuclear transport.
Inhibition of DNA repair, for instance by the cleavage of
PARP-1 or the kinases ATM and DNA-PK, has been long
thought to promote the apoptosis process. Other targeted
factors are involved in DNA synthesis and replication, such as
DNA polymerase Pol e, MCM3 or replication factor RFC140. In
addition, various proteins that bind to chromatin, and either
fulfill a transcriptional role or have structural functions in the
nuclear matrix, are destroyed. In almost all cases, these
cleavages result in the generation of proteins that are no
longer able to bind to DNA or to stabilize chromatin in the
nuclear matrix. With a few exceptions that are discussed
below, virtually all pathways of macromolecular synthesis are
impaired by caspases. Cleavage of RNA helicase A and
multiple splicing factors, including U1 70-kDa snRNP and at
least eight different heterogeneous nuclear ribonucleo-
proteins (hnRNPs), leads to a general shut-off of RNA
synthesis, processing and transport. Moreover, protein
synthesis is blocked either by the inactivation of translation
initiation factors, including eIF2a, eIF3 and eIF4G proteins, or
by the activation of PKR kinase that blocks protein synthesis
through eIF2-a phosphorylation.

Caspase substrates in signal transduction

A tremendous variety of proteins involved in signal transduc-
tion are cleaved by caspases. The proteolytic cleavage can
either lead to the functional inhibition or to the activation of
these mediators. In some cases, it has been established that
caspase-mediated activation of these molecules is involved in

transduction and amplification of the apoptotic signal.
Caspases turn off cell-protective mechanisms and activate
pathways that lead to cell destruction. Classical apoptosis
inhibitors that are cleaved by caspases are Bcl-2 proteins or
the caspase-8 inhibitor c-FLIP. The cleavage of Bcl-2 and Bcl-
xL resulting in the removal of the N-terminal BH4 domain not
only leads to a loss of their antiapoptotic function, but even
converts them to proapoptotic proteins. Similarly, during
death receptor-mediated apoptosis caspase-8 cleaves the
Bcl-2 member Bid generating an active C-terminal fragment
that induces the proapoptotic release of cytochrome c from
mitochondria. The conversion of antiapoptotic into proapop-
totic regulators constitutes a positive feedback loop in the
terminal phase of apoptosis, removing apoptotic inhibitors
and promoting caspase activation. It is interesting to note
that certain viral Bcl-2 proteins can also be cleaved by
caspases, but in these cases no proapoptotic fragments are
generated.

Several kinases and transcription factors with antiapoptotic
activity are inactivated during apoptosis. Akt and Raf-1
provide two examples of antiapoptotic kinases that are
cleaved by caspase-3. As both kinases can inactivate
proapoptotic molecules such as Bad, their degradation
presumably constitutes a positive feedback loop in apoptosis.
Antiapoptotic transcription factors inhibited by caspases
include the cAMP-responsive factor CREB, heat-shock factor
HSF-1 and NF-kB. The NF-kB pathway is a paradigm of how
caspase cleavage may result in a complete loss of the
transcription factor’s antiapoptotic function: (i) Cleavage of
NF-kB subunit p65 (RelA) generates a dominant-negative
fragment that is still able to bind to DNA but looses its
transactivating activity, and therefore functions as a dominant-
negative inhibitor. (ii) The NF-kB inhibitor IkB-a is normally
inducibly degraded by the proteasome. The N-terminal
cleavage of IkB-a by caspases generates a constitutive
super-repressor that can no longer be removed by the
proteasome. (iii) The cleavage of the adapter proteins
TRAF-1 and RIP-1 that are involved in receptor-mediated
pathways also contributes to impaired NF-kB activation and
antiapoptotic capacity. Thus, cells have elaborate mechan-
isms in order to interrupt antiapoptotic signaling efficiently.

While some substrates are functionally inactivated upon
caspase-mediated cleavage, other proteins and enzymes can
be activated, mostly by removing an inhibitory or regulatory
domain within the caspase target. The physiological conse-
quence of this gain-of-function cleavage for apoptosis
remains mostly unclear. Several members of the PKC family
and MAP kinase pathway are constitutively activated by the
separation of an N-terminal regulatory and the C-terminal
catalytic domain. Examples are the p21-activated kinase
PAK2 as well as ROCK-1. As described above, activation of
PAK2 and ROCK-1 is important for cytoskeletal reorganiza-
tion and plasma membrane blebbing. In the case of MEKK1,
expression of the caspase-cleaved kinase fragment induces
caspase activation, thereby providing a positive feedback loop
for apoptosis. Epithelial cells undergo apoptosis if they are
detached from the basement membrane, a process called
anoikis. MEKK1 is activated following cell detachment, and
blockade of either MEKK1 or caspase activity blocks anoikis.
Cleavage of several MST kinases by caspase-3 also yields
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constitutively active molecules and potent inducers of
apoptosis. Apoptosis induction by all these upstream kinases
in the SAPK/JNK pathway may be explained in part by their
ability to activate JNK, which then phosphorylates and
inactivates Bcl-2.

Most kinase pathways exert antiapoptotic functions. It is
thus not unexpected that a major cellular protein phospha-
tase, PP2A, which counteracts the survival function of
kinases, is activated by caspases. Protein phosphorylation
can also protect caspase substrates from proteolysis. This
has been convincingly demonstrated for Bid that is protected
from caspase-8 cleavage through phosphorylation by casein
kinases I and II.14 Another example is Max, a transcription
factor in the c-Myc network, which can be cleaved only if
dephosphorylated. A very intriguing finding has been recently
made for C/EBPb. The transcription factor itself is not cleaved
by caspases, but curiously acts as caspase inhibitor upon
phosphorylation.15 Threonine phosphorylation of C/EBPb
within a KTVD sequence creates a noncleavable mimic of
an XEXD cleavage site, which binds caspases and thereby
inhibits caspase action. Hence, such dummies of caspase
substrates may represent a novel survival mechanism.

Some peculiarities of substrate cleavage

Caspase cleavage can also result in the cellular redistribution
and dislocation of signaling mediators. In some cases, such
as the Grb2 adapter protein GrpL or the phosphodiesterase
PDE4A5, an SH3-domain within the substrate is removed
causing its inability to bind to physiological interaction
partners. A change of subcellular localization following
caspase cleavage has also been observed for the kinases
Fyn and MEKK1. Another notable example is Bid. Upon
cleavage by caspase-8, the proapoptotic p15 fragment of Bid
undergoes post-translational rather than the classical cotran-
slational N-myristoylation at a glycine residue that becomes
newly exposed by the cleavage.16 This postproteolytic N-
myristoylation then enables Bid to target mitochondria and
serves as an activating switch, which strongly enhances
cytochrome c release.

Apoptosis is generally associated with a shut-down of cap-
dependent protein translation, which is mediated by caspase
cleavage of several translation factors. Interestingly, it has
been recently observed that during apoptosis, translation of a
subset of mRNAs prevails. The reason for this is presumably a
switch from cap-dependent to internal ribosome entry site
(IRES)-mediated protein translation. DAP-5, a member of the
eIF4G family, is activated by caspases and stimulates
translation from the IRES sites of c-Myc, Apaf-1, and its own
mRNA.17 Thus, DAP-5 is a rather unique caspase-activated
factor that supports cap-independent translation of apoptosis-
related proteins and thereby may amplify the apoptosis
cascade.

Most caspase substrates identified so far are cleaved by
caspase-3. This has been convincingly shown in the system of
MCF-7 breast carcinoma cells that lack caspase-3, and
caspase-3 re-expressing derivatives.18 Nevertheless, several
substrates that are efficiently cleaved by caspase-3 can also
be targeted by caspase-7, suggesting an at least partial

redundance of both caspases. Caspase-7 activity is upregu-
lated in cells of caspase-3-deficient mice, where it might
compensate for the loss of caspase-3. Caspase-7 and -5, but
not caspase-3, cleave transcription factor Max. Interestingly,
in this case Max is not cleaved at the classical aspartate
residue in the P1 position, but at an unusual glutamate
residue.19 Cleavage of the cytoplasmic tail of TNF-R1, the
cardiac myosin light chain vMLC and connexin 45.6 at a
glutamate instead of an aspartate residue are further
examples. Cleavage at these noncanonical sites suggests
that the specificity of caspases may in fact be broader than
generally thought. Also, the Drosophila caspase DRONC can
cleave substrates following glutamate residues.20 Caspase-7
not only cleaves substrates at atypical motifs, but can be
activated itself by a rather unusual processing event. It has
been reported that various serine proteases can trigger the
proteolytic activity of the caspase-7 zymogen.21 For instance,
cathepsin G activates caspase-7 by cleaving at a glutamate
bond, indicating that the cleavage specificity at aspartic acid is
not strictly required for caspase activation.

The interaction of caspases with other classes of proteases,
including calpains, cathepsins or the proteasome, is poorly
understood. When searching for caspase substrates, it must
be considered that high concentrations of caspase inhibitors,
such as the fluoromethylketone zVAD-fmk, are less specific
than often anticipated, because calpains are inhibited as well.
Several substrates of caspases are also cleaved by calpains
including structural proteins, such as fodrin, keratins and b-
actin, and proteins involved in signal transduction, such as
Bid, Bax, focal adhesion kinase and many others. It has been
found that caspases and calpains interfere with each other,
resulting in mutual protease activation. Caspases can
indirectly activate calpain by cleavage and inactivation of its
inhibitor calpastatin, and thereby turn on downstream events
leading to cellular destruction. However, it is still controversial
as to whether calpains function upstream or downstream of
caspases. It has also been reported that calpains cleave
procaspases to generate proteolytically inactive caspase
fragments.22

Caspases are not only involved in apoptosis but also in the
induction of inflammation. In fact, the former notion that
apoptosis and inflammation are exclusive processes should
be replaced, as both processes are linked at various levels.
Caspase-1 processes and maturates the cytokine precursors
pro-IL-1b and pro-IL-18, also known as IFN-g-inducing factor.
Although caspase-1 is required mainly for induction of
inflammation, it can process the effector caspases-3, -6 and
-7 and may initiate apoptosis under certain conditions.
Effector caspases can also activate pro-IL-16 and pro-
EMAP-II, an endothelial-monocyte-activating polypeptide.
This precursor of EMAP-II is an intriguing substrate, because
it exerts a dual function:23 Pro-EMAP-II is identical to the p43
cofactor of the aminoacyl-tRNA synthetase complex. After
cleavage, preferentially by caspase-7, its t-RNA binding
capacity is lost and protein translation is blocked. The
translation arrest is accompanied by the release of the
EMAP-II cytokine that may play a role in the engulfment of
apoptotic cells by phagocytes. Caspase-mediated substrate
cleavage therefore has multiple effects summarized as (i) a
halt of cell cycle progression, (ii) disabling of repair
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mechanisms, (iii) disassembly of molecular structures, (iv) cell
detachment, and (v) maturation of cytokine precursors.

Substrate cleavage at the balance
between necrosis and apoptosis

Although caspases are presumably not essential for necrotic
cell death, recent evidence suggests that the cleavage of
certain substrates may determine the form of cell death. One
of the first death substrates found to be cleaved by caspases
was PARP-1, which catalyzes the transfer of ADP-ribose
polymers to nuclear proteins and thus presumably facilitates
DNA repair.24 Owing to its role in DNA repair, it was originally
hypothesized that the cleavage of PARP may lead to lethal
DNA damage and compromise most of its DNA repair activity,
and thus may contribute to the demise of the cell. However,
PARP(�/�) mice neither reveal a phenotype which would
indicate a crucial role in apoptosis nor is the sensitivity
towards CD95- and TNF-R1-mediated apoptosis affected.25

Thus, cleavage of PARP may be a characteristic event, but is
presumably dispensable for most apoptotic pathways.

New evidence, however, suggests that PARP inactivation
by caspase-3 is important for turning off an energetically
expensive DNA repair pathway and for maintaining ATP levels
that are required for the execution of apoptosis. PARP is
rapidly activated during oxidative stress and DNA damage.
Activated PARP then transfers more than 100 ADP-ribose
moieties to each acceptor site in target proteins, and each
cycle of ADP-ribosylation is coupled with consumption of one
NAD molecule, which is metabolically equivalent to four ATP
molecules. Hence, it can be imagined that excessive
activation of PARP will quickly deplete cellular energy stores.
In the absence of an energy pool sufficient to execute
apoptosis or to maintain ionic homeostasis, cells can die
quickly by necrosis. Indeed, when cells engineered to express
caspase-resistant PARP are treated with apoptotic stimuli,
they undergo extensive necrosis instead of apoptosis.26

Consistent with the requirement of maintaining cellular energy
during apoptosis, cells artificially depleted of ATP undergo
necrosis instead of apoptosis under conditions that would
normally trigger caspase activation.27 Thus, cleavage of
PARP prevents depletion of the cellular energy needed for
apoptosis and thus may function as a molecular switch
between apoptotic and necrotic cell death. Similar to PARP,
also the cleavage of other substrates may provide a link
between apoptosis and necrosis. For instance, cleavage
and inactivation of the plasma membrane calcium ATPase
PMCA-4, which removes calcium from the cytosol, disturbs
ion homeostasis.28 The subsequent cellular calcium overload
may be responsible for the secondary necrosis that is
observed in the late stages of apoptosis.

Role of caspase substrates in disease
progression

Increased caspase activation has been recently demon-
strated in various diseases. However, the cleavage of several
substrates may not only contribute to increased tissue
damage, but may also play an active role in disease

progression. Such a direct role of substrate cleavage has
been most intensively studied in neurodegeneration and
autoimmune diseases. Autoimmunity to intracellular proteins
has been identified as an important factor in autoimmune
diseases. Massive apoptosis or defective clearance may lead
to an accumulation of apoptotic cells that concentrate
caspase-cleaved proteins in their apoptotic bodies and
membrane blebs. The presence of autoantibodies against
caspase substrates, such as lamins, fodrin, DNA-PK, PARP
or NuMA, has been demonstrated in several autoimmune
diseases.29 Cleavage of these autoantigens presumably
enhances their immunogenicity by exposing cryptic neoepi-
topes. The cleaved proteins are then processed and
presented by dendritic cells to circulating autoreactive T cells,
triggering an autoimmune response.

The cleavage of specific substrates can be directly linked to
the pathogenesis of certain neurodegenerative disorders.
Huntington’s disease, a genetically determined neurodegen-
erative disease, results from the expansion of CAG triplets at
the 50-primed end of the gene encoding huntingtin, a protein
with a long polyglutamine stretch. Huntingtin is cleaved by
caspase-3 and results in an N-terminal fragment, which
aggregates and forms nuclear inclusions that are directly
cytotoxic for neurons.30 Huntington’s disease manifests only if
huntingtin exceeds 35 glutamine residues. Because the rate
of caspase cleavage of huntingtin correlates with the length of
the polyglutamine stretch, accumulation of the fragment may
cause a vicious cycle. A pathogenic role of caspase cleavage
has also been implicated in other neurodegenerative dis-
orders. Similar to huntingtin, the polyglutamine tract proteins
atrophin-1, androgen receptor and ataxin-3 are caspase
substrates. Indeed, mutations of the caspase recognition
sites in atrophin-1 and androgen receptor abrogate their
cytotoxicity in vitro.

Alzheimer’s disease is characterized by brain lesions of
neurofibrillary tangles, and senile plaques built of aggregates
of the b-amyloid peptide. Aggregates of b-amyloid peptide
induce neuronal apoptosis, and increased production of b-
amyloid peptide has been postulated as an important
pathologic mechanism in early-onset familial Alzheimer’s
disease. Effector caspases presumably increase b-amyloid
production by several mechanisms. Loss-of-function muta-
tions in the presenilin-1 and -2 genes are responsible for the
majority of familial Alzheimer’s disease and are thought to
increase b-amyloid production. Caspase-3 can cleave and
inactivate presenilins, which may mimic the effect of
pathologic presenilin mutations. The 40- to 42-amino-acid
b-amyloid peptide is derived from proteolytic processing of the
amyloid precursor protein (APP) at two sites by the b- and g-
secretase. Caspase-3 cleaves APP at a site different from the
g-secretase site.31 Nevertheless, the N-terminal caspase
cleavage product of APP strongly facilitates the production
of b-amyloid peptide, and appears itself to be a component of
senile plaques found in Alzheimer patients. Because cas-
pase-3 activation and APP cleavage are also induced in vitro
after ischemic brain injury, a risk factor for Alzheimer’s
disease, these results provide another example of a positive
feedback loop between caspase substrate cleavage and
neurodegeneration. Neuronal apoptosis from ischemia or
other causes activates caspase-3 and stimulates APP
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cleavage, which increases the propensity for b-amyloid
peptide production. In turn, increased extracellular b-amyloid
peptide production may induce neuronal apoptosis, leading to
further deposition of senile plaques. The cytotoxic properties
of their cleavage products illustrate that specific caspase
substrates are not only involved in cell destruction, but also
fulfill an active role in the exacerbation of disease processes.

Caspases: more than just killers?

A strikingly large number of caspase targets are involved in
cell cycle regulation. This has led to speculations that
caspases are not only involved in cell death but also in
proliferative events.32 Supportive, yet indirect evidence for a
role of caspases in cell growth is the observation that
proliferation of primary T cells is inhibited by cell-permeable
caspase inhibitors.33,34 Moreover, interference with pathways
leading to caspase processing, as in FADD-deficient or Bcl-2-
transgenic mice, also results in impaired mature T-cell
proliferation.

Several negative regulators including Wee1, an inhibitor of
the cell cycle-regulatory kinases CDK2 and CDC2, as well as
CDC27, a component of the anaphase-promoting complex,
are cleaved by caspases. Wee1 is a critical component of the
G2/M cell cycle checkpoint machinery and mediates cell cycle
arrest by phosphorylation of CDC2. Therefore, cleavage of
Wee1 in proliferating lymphocytes could lead to its inactiva-
tion, thus allowing cell cycle progression. Of note, Wee1
processing by caspases during apoptosis in Jurkat T cells
correlated with a strong decrease in Wee1 activity and an
increase in CDC2 activity.35 Moreover, the cyclin inhibitors
p21Waf1 and p27Kip1 are targeted by caspases resulting in
increased CDK2 activity that could allow cell cycle progres-
sion.

If caspases are activated during mitosis, a critical question
is then, how could caspase cleavage be restricted to those cell
cycle regulators, while leaving other vital proteins intact? The
answer could lie in a specific subcellular compartmentaliza-
tion of caspases, the existence of scaffold proteins or a
different accessibility of cleavable substrates. Some cas-
pases are translocated to a certain organelle during activation,
and in some cell types certain caspases have been localized
in the nucleus. Interestingly, it has been found that, although
caspases were activated and Wee1 was cleaved after
mitogenic T-cell stimulation, neither DNA replication factor
RFC140 nor ICAD were cleaved in proliferating T cells.33

Cleavage of RFC140 and ICAD would lead to inhibition of
DNA replication and fragmentation of genomic DNA, events
that are not compatible with cell proliferation. Thus, selective
substrate processing could explain why nonapoptotic cells
survive and proliferate despite caspases being activated.

Certainly, there exist many links, also at the morphological
level, between the processes of cell death and proliferation.
However, it must be emphasized that the view of a potential
involvement of caspases in proliferation is largely based on
indirect evidence and therefore remains highly speculative.
Because cleavage of cell cycle regulators occurs late in
apoptosis by caspase-3-like activities in parallel with the
dismantling of the transcription and translation machinery,

caspase activation cannot trigger the normal mitotic program.
For example, mitotic spindles do not form in apoptotic cells,
distinguishing apoptosis from a mitotic catastrophe.

Limited substrate cleavage in terminal
differentiation and hematopoiesis

In contrast to the rather speculative involvement of caspases
in proliferation, there is an increasing body of evidence
suggesting that caspases might act in cellular differentiation.
A physiological role of caspases in this process has first been
suggested for keratinocytes and lens fiber cells, in which the
characteristic enucleation of the cells could be regarded
somehow as a caspase-mediated incomplete apoptotic
process.36,37 Caspases have also been implicated in ery-
thropoiesis, because caspase inhibitors suppressed the
nuclear extrusion process and consequent erythrocyte
formation.38 Furthermore, caspase activation can be detected
during thrombopoiesis and the fragmentation of proplatelets
from megakaryocytes, without a concomitant induction of cell
death.39 Both the incubation with peptide caspase inhibitors
and the overexpression of Bcl-2 blocked proplatelet formation.
Interestingly, in transgenic mice overexpressing Bcl-2 under
the control of a hematopoietic cell-specific promoter, also a
reduction in platelet formation is found, whereas the number
of megakaryocytes remains unchanged. Finally, caspases
might be required for differentiation processes also of
nucleated cells such as macrophages and muscle cells.
Elevated caspase activation is detectable in monocytes when
they undergo M-CSF-stimulated macrophage differentia-
tion.40 This is not only prevented by pharmacological caspase
inhibitors, but also by the overexpression of Bcl-2 and p35. In
myoblasts, homologous deletion of caspase-3 leads to a
dramatic reduction in myofiber formation and decreased
expression of muscle-specific proteins.41 Thus, all these lines
of evidence suggest that caspases are not only required for
cell death processes, but might also be capable of regulating
nonapoptotic functions in certain cell types.

It is obvious that differentiation-related caspase activation
must be tightly regulated to prevent cells from dying by
apoptosis. During cellular differentiation, caspase activation is
apparently either very limited, transient or localized. For
instance, during megakaryocyte differentiation, the limited
caspase activation is confined to dot-like structures.39 When
senescent megakaryocytes die, however, caspase activation
switches from a localized to a diffused and largely increased
cytosolic activation. Also, little is known about the proteins
cleaved by caspases during differentiation processes. Only a
limited number of distinct substrates seem to be cleaved. For
instance, in erythroblasts cleavage of PARP, lamin B and
acinus was found, while the ICAD and GATA-1, a transcription
factor essential for erythrocyte formation, remained intact.
Interestingly, MST1 kinase was identified as a crucial
caspase-3 effector in myoblast differentiation.41 As mentioned
above, MST1 is cleaved and activated by caspase-3, and
serves to enhance the activity of downstream MAP kinases
that promote skeletal muscle differentiation. Expression of the
truncated active kinase restored the differentiation phenotype
in caspase-3 deficient myoblasts.
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As discussed above, it remains currently unexplained as to
how caspases could selectively cleave some targets without
cleaving others. The compartmentalization of caspases, the
duration of the caspase signal, or the coordinated expression
of antiapoptotic molecules might play a role in the selectivity of
caspase cleavage. It is also conceivable that low levels of
caspase activity, such as those observed in differentiating
cells, are associated with protective mechanisms. For
instance, it was reported that the partial cleavage of Ras-
GAP, a GTPase in the Ras signaling pathway, owing to low
caspase activity first generates an N-terminal fragment that is
antiapoptotic by activating the PI3K pathway.42 Increased
caspase levels, in contrast, result in the further cleavage of
Ras-GAP into two proapoptotic fragments. Thus, caspase
cleavage of intracellular target proteins may strongly depend
on the cellular context including the differentiation status.
Clearly, much remains to be learned about a potential dual
role of caspases in apoptosis and cellular differentiation.
Characterization of the molecules that regulate this limited
caspase activation and the relevant substrates will certainly
provide exciting new insights into processes that, beyond cell
death, might link caspase cleavage to important nonapoptotic
biological processes.
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