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Abstract
Apoptosis is the mode of photoreceptor cell death in many
retinal dystrophies. Exposure of Balb/c mice to excessive
levels of light induces photoreceptor apoptosis and repre-
sents an animal model for the study of retinal degenerations.
Caspases have emerged as central regulators of apoptosis,
executing this tightly controlled death pathway in many cells.
Previously we have reported that light-induced photoreceptor
apoptosis occurs independently of one the key executioners
of apoptosis, caspase-3. This present study extends these
results reporting on the lack of activation of other caspases in
this model including caspases-8, -9, -7, and -1. Furthermore,
photoreceptor apoptosis cannot be inhibited with the broad
range caspase inhibitor zVAD-fmk indicating that light-
induced retinal degeneration is caspase-independent. We
demonstrate that cytochrome c does not translocate from
mitochondria to the cytosol during photoreceptor apoptosis.
We also show that during retinal development apoptotic
protease activating factor (Apaf-1) protein levels are markedly
decreased and this is associated with the inability to activate
the mitochondrial caspase cascade in the mature retina. In
addition, there is also a significant reduction in expression of
caspases-3 and -9 during retinal maturation and these levels
do not increase following light exposure. Finally, we show that
the calcium-dependent proteases calpains are active during
light-induced retinal degeneration and establish that the
calcium channel blocker D-cis-diltiazem completely inhibits
photoreceptor apoptosis.
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Introduction

Light-induced photoreceptor apoptosis represents an animal
model for the study of retinal degenerations such as Retinitis
Pigmentosa (RP), a genetically diverse group of disorders
involving the progressive death of photoreceptor cells.1

Apoptosis is the mode of photoreceptor cell death in both
human cases and animal models of RP and is now recognised
as the final common pathway in many other human retinal
disorders.2 ± 5 Despite these observations the sequence of
events that lead to photoreceptor apoptosis and the apoptotic
pathways involved remain poorly characterised. As a
genetically encoded programme of cell destruction, apoptosis
is under the control of a network of highly ordered and
conserved components. Regulatory components of the
apoptotic pathways in photoreceptors therefore, represent
possible therapeutic targets for the inhibition of apoptosis and
the amelioration of blinding retinal disorders such as RP.

The caspase family of cysteine proteases have emerged
as central regulators of apoptosis. The family is comprised
of at least 14 members present in the cell as inactive
precursors that undergo proteolytic processing and activa-
tion. Once activated, caspases can proteolyse additional
caspases generating a cascade that cleaves key structural
components as well as proteins critical for cell survival in a
highly sequence-specific fashion, ultimately resulting in the
systemic and controlled destruction of the cell.6 Many of the
typical morphological features associated with apoptosis
such as internucleosomal DNA fragmentation, as well as
membrane blebbing and apoptotic body formation can be
orchestrated by caspase activation and consequently the
caspase family are believed to play a key and central role
in apoptosis.7 Two major caspase pathways have been
described. The receptor-mediated pathway entails ligand
binding to cell surface receptors, receptor oligomerisation
and recruitment and activation of caspase-8 while the
mitochondrial pathway involves caspase activation from
within the cell. This intrinsic pathway is initiated by release
of cytochrome c from the mitochondrial intermembrane
space. Cytochrome c associates with Apaf-1 in a dATP
dependent manner to promote the activation of caspase-9.
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Caspase-9 then cleaves and activates the executioner
caspases-3 and -7. In turn, caspase-3, described as one of
the key executioners of apoptosis has been demonstrated
to activate at least four other caspases (-2, -6, -8 and 10).8

There is no doubt that caspases play a central role in
many apoptotic systems. However, increasing evidence now
indicates that apoptotic features can be found also in cells
where caspase activation is not detected or where caspase
inhibitors have been employed.9 ± 12 Indeed, we have
previously provided evidence for a caspase-independent
pathway of apoptosis in photoreceptors in vitro.13 Further-
more, there is increasing evidence that other protease
families including calpains are involved in apoptosis.14,15

Calpain is a family of calcium-dependent cysteine proteases
of which two major isoforms exist, mcalpain (activated with
mM Ca2+) and mcalpain (activated with mM Ca2+).16 Like
caspases, calpain substrates include a variety of cytoske-
letal proteins such as the actin-binding protein fodrin17 as
well as proteins involved in apoptosis such as Bax,18 p35,19

p53,20 procaspase-9,15 procaspase-3 and PARP.21 In-
creases in intracellular calcium levels occur in many
apoptotic systems and may initiate activation of these
calcium-dependent proteases. Rapid activation of calpains
has been demonstrated during thymocyte and neuronal
apoptosis where calcium influx precedes activation.22,23

Moreover, in several studies calpain inhibitors have been
demonstrated to block apoptosis.24 ± 26 We have previously
reported absence of caspase-3 activation during light-
induced photoreceptor apoptosis in vivo.27 In this present
study, we examine the activation status of several other
members of the caspase family as well as the potential
involvement of the calcium-activated proteases, calpains.

Results

Caspases-1, -7, -8 and -9 are not activated during
light-induced photoreceptor apoptosis

Caspases-8, -9, and -3 are situated at pivotal junctions in
apoptotic pathways. While caspase-8 is activated following
ligand binding and receptor oligomerisation (TNF and TRAIL
receptors), agents or insults that trigger release of cytochrome
c from mitochondria result in caspase-9 activation. Caspase-8
then activates caspase-3 by proteolytic cleavage and
caspase-9 activates both caspases-3 and -7. Caspase-7
has been identified as a contributor to the execution of
apoptosis in several systems and can cleave many of the
same substrates as caspase-3, including PARP.28 We have
previously reported the lack of caspase-3 activation during
light-induced photoreceptor apoptosis in vivo. In this study we
therefore initially examined the activation status of the effector
caspase-7 as well as the initiator caspases-8 and -9.

Caspase-7 is synthesised as a 35 kD inactive proenzyme
and is cleaved to generate active subunits of 20 and 12 kD
while procaspase-9 (45 kD) is cleaved to generate active
subunits of 37 and 39 kD. Analysis of caspases-7 and -9
activation by Western blot demonstrates the absence of
active subunits in cell lysates taken from the retinas of light-
induced Balb/c mice 3, 6, 14 and 24 h after light exposure
(Figure 1a,b). The murine haematopoietic 32D cell line is

included as a control to demonstrate the processing of
procaspase-7 (35 kD) and procaspase-9 (46 kD) to the
active 20, 37 and 39 kD fragments respectively as these
cells undergo apoptosis following ultraviolet light (UV)
irradiation. The differences in caspase-7 levels observed
between these two cell types may be a reflection of the
differences in the susceptibility of a dividing, short-lived,
apoptosis-prone, haematopoietic cell and a mature, post-
mitotic, irreplaceable neuronal cell to apoptosis.29

Caspase-8 is synthesized as a 53 kD inactive proen-
zyme and is cleaved initially to generate a 42 kD subunit.
Analysis of the levels of procaspase-8 (53 kD) and the
42 kD subunit by Western blot demonstrates no detectable
decrease in procaspase-8 and the absence of the 42 kD
subunit in cell lysates taken from the retinas of light-
induced Balb/c mice 3, 6, 14 and 24 h after light exposure
(Figure 1c). The Jurkat cell line is included as a control to
demonstrate the processing of procaspase-8 (53 kD) to the
42 kD fragment as these cells undergo apoptosis following
incubation with anti-Fas IgM. To further confirm the
absence of active caspase-8 in the retina of light-induced
Balb/c mice, the activity of caspase-8 like proteases was
assessed by measuring the cleavage of the colorimetric
substrate AcIETD-rNA (Figure 1d). Again no evidence of
AcIETD-rNA cleavage was obtained in light-induced Balb/c
retina. Untreated and anti-Fas IgM treated Jurkat cells
served as negative and positive controls, respectively.

Caspase-1 activation has been detected during retinal
degeneration in the Royal College of Surgeons (RCS) rat
and inhibitors of caspase-1 partially delayed this process.30

In addition, a recent study carried out by Grimm and
colleagues on light-induced gene expression in the retina
revealed caspase-1 to be the only gene differentially
regulated by light exposure.31 We therefore examined the
activation status of caspase-1 by Western blot (Figure 1e)
and by determination of YVAD-rNA cleavage (Figure 1f)
using recombinant caspase-1 as a positive control. We
could not detect caspase-1 activity by either method in
light-induced Balb/c mice 3, 6, 14 or 24 h after light
exposure.

Caspase-inhibitor zVAD-fmk fails to prevent
light-induced retinal injury in vivo

The major evidence for the apparent central role of caspases
in apoptosis has come from studies which employed caspase
inhibitors to block apoptosis. However other studies that have
used the same inhibitors have demonstrated that apoptosis
can occur in a caspase-independent manner.10,32,33 We
examined the effect of the irreversible, broad-spectrum
caspase inhibitor, zVAD-fmk on photoreceptor apoptosis.
Prior to light exposure age matched Balb/c mice, (12 mice in
total) were injected with 80 mg of zVAD-fmk (in 2 ml of 2%
DMSO) into the right eye and 2 ml of 2% DMSO into the left
eye. As shown in Figure 2, zVAD-fmk failed to prevent
apoptosis as assessed by TUNEL. In both the control retina
(Figure 2a ± d) and the retina treated with zVAD-fmk (Figure
2e ± h) there is scattered TUNEL labelling at 6 h and abundant
TUNEL positive cells at 14 and 24 h. The dose of caspase
inhibitor (80 mg) employed in this study is significantly greater
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Figure 1 (A) Analysis of caspase-7 activity by Western blot. Equivalent quantities of total protein from cell lysates taken prior to light exposure (0 h), and 3, 6, 14
and 24 h of darkness following light exposure were resolved using SDS ± PAGE and transferred to a nitrocellulose membrane. The presence of procaspase-7
(35 kDa) and the proteolytically active 20 kDa fragment were determined using an anti-caspase-7 antibody. Untreated and UV treated 32D cells served as negative
and positive controls respectively in order to determine the ability of this antibody to detect active murine caspase-7. The 32D protein lysates were extracted 16 h
after a 10-min exposure to ultraviolet irradiation. These cells demonstrate the processing of procaspase-7 (35 kDa) to the active 20 kDa fragment as these cells
undergo apoptosis. The 35 kDa procaspase species is present at all time points analysed in the Balb/c extracts, however, the 20 kDa fragment is absent up to 24 h.
The blot was re-probed with an antibody to b-actin to demonstrate equal protein loading (bottom). A representative result of three independent experiments is
shown. (B) Analysis of caspase-9 activity by Western blot. Equivalent quantities of total protein from cell lysates taken prior to light exposure (0 h), and 3, 6, 14 and
24 h of darkness following light exposure were resolved using SDS ± PAGE and transferred to a nitrocellulose membrane. The presence of procaspase-9 (46 kDa)
and the proteolytically active 39 and 37 kDa fragments were determined using an anti-caspase-9 antibody. Untreated and UV treated 32D cells served as negative
and positive controls respectively. In contrast to the 32D cells, which show processing of procaspase-9 (46 kDa) to the active 39 and 37 kDa fragments as these
cells undergo apoptosis following UV treatment, retinal cells retain capase-9 in its inactive form during light-induced apoptosis. The blot was re-probed with an
antibody to b-actin to demonstrate equal protein loading (bottom). A representative result of three independent experiments is shown. (C) Analysis of caspase-8
activity by Western blot. Equivalent quantities of protein from cell lysates taken prior to light exposure (0 h), and 3, 6, 14 and 24 h of darkness following light
exposure were resolved using SDS ± PAGE and transferred to a nitrocellulose membrane. The presence of procaspase-8 (53 kDa) and the 42 kDa fragment were
determined using an anti-caspase-8 antibody. Untreated and Fas IgM treated Jurkat cells served as negative and positive controls respectively in order to
determine the ability of this antibody to detect the 42 kDa fragment. The Jurkat cell protein lysates were extracted immediately after incubation with apoptosis
inducing anti-Fas IgM antibody (300 ng ml71) for 4 h. These cells demonstrate the processing of procaspase-8 (53 kDa) to the 42 kDa fragment as these cells
undergo apoptosis. The 53 kDa procaspase species is present at all time points analysed in the Balb/c extracts, however, the 42 kDa fragment is absent up to 24 h.
The blot was re-probed with an antibody to b-actin to demonstrate equal protein loading (bottom). A representative result of three independent experiments is
shown. (D) Analysis of caspase-8 like activity by detection of IETD-rNA cleavage. The measurement of IETD-rNA cleavage was performed in a spectrophotometric
assay by monitoring the liberation of rNA due to caspase activity prior to light exposure (0), and 3, 6, 14 and 24 h of darkness following light exposure. Untreated
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than the effective dose of caspase inhibitors shown to have
protective effects in photoreceptors in previous studies.34,35

Cytochrome-c is not released from the
mitochondria following light-exposure

Release of cytochrome c from the mitochondrial intermem-
brane space is a fundamental event in apoptosis as it sets in
motion the assembly of the apoptosome, resulting in
activation of caspase-9, the downstream effector caspases-

7 and -3 and ultimately cell death.8 We therefore investigated
the cellular distribution of cytochrome c during light-induced
photoreceptor apoptosis using subcellular fractionation stu-
dies. Cytochrome c was not detected in cytosolic fractions by
Western blot during light-induction (1 h), immediately follow-
ing light exposure (2 h) or following a further incubation of 3, 6,
14 and 24 h in darkness (Figure 3a). These results
demonstrate that cytochrome c does not translocate from
mitochondria to the cytosol during light-induced retinal
degeneration.

Addition of cytochrome c to cell-free extracts does
not initiate activation of caspases-9 or -3

Several studies have demonstrated that cytochrome c in
association with dATP is capable of inducing proteolytic
processing of procaspases-9 and -3 in cell free systems
derived from a variety of cell types.8,36 ± 38 We therefore
investigated the ability of cytochrome c to initiate the
activation of caspases-9 and -3 in cell free extracts derived
from adult Balb/c retina used in this study (Figure 4). The
murine haematopoietic 32D cell line is included as a control to
demonstrate the rapid processing of procaspase-9 (45 kD) to
the active 37 and 39 kD fragments and procaspase-3 to its
active p17 kD subunit following incubation with cytochrome c
for up to three hours (Figure 4c). In direct contrast, analysis of
the conversion of procaspases-9 and -3 to their active forms in
cytosolic extracts prepared from untreated retina (Figure 4a)
or from light-induced retina (14 h) (Figure 4b), following
incubation with cytochrome c demonstrates no detectable
decrease in the procaspases-9 or -3 and the absence of the

and anti-Fas IgM treated Jurkat cells served as negative and positive controls respectively. Jurkat cells were suspended at 56105 cells/ml and treated with
apoptosis inducing anti-Fas IgM antibody (300 ng ml71) for 4 h. Data is expressed as the mean+S.E.M. of three independent experiments. (E) Analysis of
caspase-1 activity by Western blot. Equivalent quantities of protein from cell lysates taken prior to light exposure (0 h), and 3, 6, 14 and 24 h of darkness following
light exposure were resolved using SDS ± PAGE and transferred to a nitrocellulose membrane. The presence of procaspase-1 (44 kDa) and the 20 kDa fragment
were determined using an anti-caspase-1 antibody. Recombinant caspase-1 served as a positive control. The 44 kDa procaspase species is present at all time
points analyzed in the Balb/c extracts, however, the 20 kDa fragment is absent up to 24 h. The blot was re-probed with an antibody to b-actin to demonstrate equal
protein loading (bottom). A representative result of three independent experiments is shown. (F) Analysis of caspase-1 like activity by detection of YVAD-rNA
cleavage. The measurement of YVAD-rNA cleavage was performed in a spectrophotometric assay by monitoring the liberation of rNA due to caspase activity prior
to light exposure (0 h), and 3, 6, 14 and 24 h of darkness following light exposure. Recombinant caspase-1 served as a positive control. Data is expressed as the
mean+S.E.M. of three independent experiments

Figure 2 Effect of zVAD-fmk, a broad-spectrum caspase inhibitor on light
induced retinal degeneration. ZVAD-fmk was administered sub-retinally to
anaesthetised mice prior to light exposure. The right eye of each animal was
injected with 2 ml of DMSO, 0.9% W/V NaCl buffer containing 40 ug/ml zVAD-
fmk (e ± h) and the left eye was treated with 2 ml of DMSO, 0.9% W/V NaCl
alone as a control (a ± d). In control mice and in mice treated with the caspase
inhibitor zVAD-fmk, the retina of dark-adapted control mice does not show
labelling (a and e). Photoreceptors of mice from both experimental groups that
were sacrificed at 6 h following light exposure have scattered labelling in the
ONL (b and f) and mice sacrificed 12 h (c and g) and 24 h (d and h) after light
exposure show significant labelling of photoreceptors. ONL: outer nuclear
layer; INL: inner nuclear layer

Figure 3 Analysis of cellular distribution of cytochrome c during photo-
receptor apoptosis. Cells were fractionated at each time point (prior to light
exposure (0 h), during light-induction (1 h), immediately following light
exposure (2 h) or following a further incubation of 3, 6, 14 and 24 h in
darkness) and equal amounts of cytosolic protein loaded into each lane. As a
positive control for cytochrome c, 20 mg of mitochondrial fraction (M) was
loaded in the first lane. The blot was initially probed with an antibody to
cytochrome c (top) and then re-probed with an antibody to b-actin (bottom) to
demonstrate equal protein loading. Cytochrome c was readily detected in the
mitochondrial fraction (M) but is absent from the cytosolic fractions up to 24 h
after light exposure. A representative result of three independent experiments
is shown
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active subunits. Due to the low level of procaspase-3 in the
retinal cell free extracts and the relative intensity of the p17 kD
product, we further examined the activation status of caspase-
3 by determination of DEVD-rNA cleavage and did not detect
caspase activity (data not shown). These cell free studies
demonstrate that the caspase cascade downstream of
cytochrome c release cannot be activated in adult photo-
receptor cells.

Apaf-1, caspases-3 and -9 protein levels are
markedly reduced in the mature retina and do not
increase following light exposure

A recent study by Yakovlev and colleagues demonstrated
that the potential of the mitochondrial caspase cascade is
reduced during brain development and this repression is
associated with down regulation of Apaf-1 and caspase-3.39

We therefore examined the expression levels of each
component of the apoptosome at the protein level to

determine the potential mechanism by which cytochrome c
fails to activate the mitochondrial caspase cascade in the
retina. Expression levels of Apaf-1, caspases-9 and -3 in the
mature retina (P60) were compared to levels expressed at
postnatal day 10 (P10), a time when developmental
photoreceptor cell death in the retina is just complete.
Western blot analysis revealed a marked reduction of both
Apaf-1 and caspase-3 expression at P60. Caspase-9 protein
levels were also observed to decrease albeit to a lesser
extent (Figure 5a). The blots were re-probed with GAPDH to
ensure equal protein loading. We also assessed protein
expression levels of apoptosome components in the
pigmented C57 retina. A similar age-dependent reduction in
protein expression was observed indicating that this observa-
tion is not restricted to the albino Balb/c retina. Furthermore,
we assessed the expression levels of Apaf-1, caspases-9
and -3 following light exposure in the Balb/c retina at P60 by
Western blot and found no significant increase in these
proteins at 3, 6, 14 and 24 h after light induction (Figure 5b).

Figure 4 Addition of cytochrome c and dATP to cell-free extracts and analysis of caspases-9 and -3 activation by western blot. Equivalent quantities of protein
from untreated Balb/c cell-free extracts (A), cell free extracts prepared from light-induced retinas (14 h) (B) and 32D cells (c), incubated in cytochrome c and dATP
for 1, 2 and 3 h were resolved using SDS ± PAGE and transferred to a nitrocellulose membrane. The presence of procaspase-9 (46 kDa) and the proteolytically
active 39 and 37 kDa fragments were determined using an anti-caspase-9 antibody (top). The presence of procaspase-3 (32 kDa) and the proteolytically active
17 kDa fragment was determined using an anti-caspase-3 antibody (middle). In contrast to the 32D cells which clearly show processing of procaspases-9 and -3 to
their active fragments (p39, p37 and p17 respectively) following incubation with cytochrome c (Figure 3c) and dATP, retinal cells (0 h and 14 h) retain caspases-9
and -3 in their inactive form (46 and 32 kDa respectively) (Figure 3A,B). The blots were re-probed with an antibody to b-actin to demonstrate equal protein loading
(bottom). A representative result of three independent experiments is shown
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These results suggest that cytochrome c fails to activate
caspases-9 or -3 in the mature retina (even in extracts
prepared 14 h after light induction) due to diminished levels of
Apaf-1 in the adult retina, which do not significantly increase
after exposure to light.

Age-dependent susceptibility of retinal CFE to
cytochrome c dependent activation of
caspases-9 and -3

P10 and P60 retinal extracts were incubated in the presence
and absence of cytochrome c and dATP for 2 h. Western blot
analysis of caspases-9 and -3 revealed processing of
procaspase-9 (45 kD) to the active 37 and 39 kD fragments
and procaspase-3 to its active p17 kD subunit in P10 extracts

following incubation with cytochrome c. In contrast, analysis of
the conversion of procaspases-9 and -3 to their active forms in
cytosolic extracts prepared from P60 retinal extracts following
incubation with cytochrome c demonstrates no detectable
decrease in the procaspases-9 or -3 and the absence of the
active subunits (Figure 6a). Similar results were obtained for
P10 and P60 C57 retinal extracts (Figure 6b). These results
demonstrate that susceptibility of retinal CFE to cytochrome c
dependent activation of caspases is age-dependent and that
defective cytochrome c-dependent caspase activation in the
mature retina correlates with diminished Apaf-1 and caspase-
3 levels. (It is interesting to note that a single immuno-reactive
band can be seen at P60 that is absent at P10. This band does
not appear to be an active product as it is detected above the
p39 kD active band. However, several splice variants of
caspase-9 that act as endogenous inhibitors of apoptosis
have been identified in several species, including
mouse.40 ± 43 It is possible that this band is a potential novel
isoform of caspase-9 that may act to inhibit apoptosis by a
similar mechanism. It would not be surprising then to find this
band present in post-mitotic fully differentiated cells at p60
and absent from dividing, apoptosis-prone, haematopoietic
cells and retinal cells at p10.

Calpains are activated during light-induced
photoreceptor apoptosis

The lack of activation of caspases in this model prompted us to
explore the possible involvement of other proteases. We
previously reported elevated intracellular calcium levels during
photoreceptor apoptosis and therefore examined the activa-
tion status of calpains, calcium activated proteases. The
activity of calpains was assessed by measuring the cleavage
of the fluorogenic substrate Suc-Leu-Tyr-AFC (Figure 7). This
substrate is a membrane permeable, calpain-specific sub-
strate. Increased calpain activation was detected in light-
induced Balb/c mice as early as 30 min after light induction
and activity continued to increase up to 24 h after the light
insult. To ensure that fluorescence activity was calpain specific
we employed the calpain inhibitor, calpeptin. At 24 h calpeptin
completely inhibited calpain activity in retinal cell lysates.
These results demonstrate the early and sustained activation
of calpains during light-induced retinal degeneration.

D-cis-diltiazem, a calcium channel blocker inhibits
early elevation of intracellular calcium, and
photoreceptor apoptosis

Calcium elevation is an early and rapid event in light-induced
retinal degeneration.27 In this present study we show that the
previously observed increase in intracellular calcium results in
the activation of calcium-dependent proteases. To determine
if elevated calcium levels play a significant role in light-
induced photoreceptor apoptosis, animals were treated with
the calcium channel blocker D-cis-diltiazem, 1 h prior to light
exposure. Intracellular calcium levels were analyzed using the
fluorescent probe fluo-3 AM (Figure 8a). Increased levels of
calcium were detected as before immediately after light
exposure and the number of cells with elevated calcium
continued to increase up to 3 h. This transient elevation of

Figure 5 Western blot analysis of Apaf-1, caspases-9 and -3 levels at P10

and P60 in Balb/c and C57 retina and during light-induced photoreceptor
apoptosis. Sixty micrograms of protein from Balb/c and C57 retina at P10

(postnatal day 10) and P60 (postnatal day 60) (A) and from cell lysates taken
prior to light exposure (0 h), and 3, 6, 14 and 24 h of darkness following light
exposure at P60 (B) were resolved by 8% (Apaf-1) and 12% (caspase-9 and -3)
SDS ± PAGE and transferred to nitrocellulose membranes. Expression levels
of Apaf-1 were determined using an anti Apaf-1 antibody (top). Expression
levels of caspases-9 and -3 were determined using anti-caspases-9 and -3
antibodies respectively (middle). Both blots were re-probed for GAPDH to
demonstrate equal protein loading (middle and bottom). These blots were
repeated three times with similar results
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intracellular calcium is blocked by D-cis-diltiazem. Finally, the
effect of D-cis-diltiazem on photoreceptor apoptosis was
examined. In treated animals no TUNEL positive photo-
receptor cells were detected immediately following light
exposure or following a further incubation of 6, 14 and 24 h

in darkness (Figure 8c, e ± g). Animals that were injected with
PBS alone as a control, showed similar TUNEL labelling to
untreated light-induced animals (Figure 8a ± d). These results
demonstrate that D-cis-diltiazem completely inhibits photo-
receptor apoptosis and establish a key role for calcium in this
model of light-induced retinal degeneration.

Discussion

Analysis of caspase activity in this study reveals that light-
induced photoreceptor apoptosis in vivo occurs indepen-
dently of caspase activation. Caspase-independent apoptosis
has been described in several other models of apoptosis
including cell death induced by vitamin D compounds44 nitric
oxide,9 depletion of heat shock protein 70,45 Bax,46 Bak,33

and the c-Myc interacting adaptor protein Bin 1.47 Further-
more, this laboratory has previously described a retinal cell
apoptosis pathway in vitro which does not involve caspase
activity and retains key features of apoptotic cell death
including DNA strand nicking, phosphatidylserine externalisa-
tion and cell shrinkage.13 So despite the central role once
attributed to caspases in apoptosis, emerging evidence now
supports the existence of caspase-independent pathways in a
number of cells under certain cellular stresses.12

To determine the molecular basis by which caspases fail
to be activated in this model we further explored the
intrinsic mitochondrial caspase pathway in photoreceptors.
Analysis of the cellular distribution of cytochrome c
revealed the absence of cytochrome c from retinal cytosolic

Figure 6 Analysis of age-dependent susceptibility of retinal CFE to
cytochrome c dependent activation of caspases-9 and -3. Equivalent
quantities of protein from P10 and P60 Balb/c cell-free extracts (A), and from
P10 and P60 C57 cell-free extracts (B), incubated with (+) or without (7)
cytochrome c and dATP for 2 h were resolved using SDS ± PAGE and
transferred to a nitrocellulose membrane. The presence of procaspase-9
(46 kDa) and the proteolytically active 39 and 37 kDa fragments were
determined using an anti-caspase-9 antibody (top). The presence of
procaspase-3 (32 kDa) and the proteolytically active 17 kDa fragment was
determined using an anti-caspase-3 antibody (middle). As before (Figure 3B),
the adult Balb/c retina (P60) retains caspases-9 and -3 in the inactive form
even after incubation with cytochrome c and dATP. This is also the case for the
adult C57 retina. In contrast, the P10 Balb/c and C57 retina show processing of
caspases-9 and -3 to their active fragments (p39, p37 and p17 respectively)
following incubation with cytochrome c and dATP. The blots were re-probed
with an antibody to b-actin to demonstrate equal protein loading (bottom). A
representative result of three independent experiments is shown

Figure 7 Analysis of calpain activity by detection of Suc-Leu-Tyr-AFC
cleavage. The measurement of Suc-Leu-Tyr-AFC cleavage was performed in
a fluorogenic assay by monitoring the liberation of AFC due to calpain activity
prior to light exposure (0 h), during light-induction (0.5 and 1 h), immediately
following light exposure (2 h) or following a further incubation of 3, 6, 14 and
24 h in darkness. As an additional control to ensure that fluorescence activity
was calpain specific the last lane (24 h+I) represents calpain activity after
incubation of the 24 h lysate in calpeptin (100 mM). Calpain activity is
completely inhibited in this sample. Data is expressed as fold induction of
calpain activity and as the mean+S.E.M. of three independent experiments
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fractions up to 24 h after light exposure indicating that
cytochrome c is not released from the mitochondria in this
model (Figure 3). Surprisingly, addition of cytochrome c to
retinal cell free extracts did not result in activation of
caspases-9 or -3 (Figure 4). To address this issue we
examined expression levels of apoptosome components,
Apaf-1 and caspase-9 as well as caspase-3 during retinal
development. A marked decrease in expression of Apaf-1
and caspase-3 in both the Balb/c and C57 adult retina was
observed compared to levels at P10 (postnatal day 10),
while caspase-9 expression also decreased albeit to a
lesser extent (Figure 5a). These results are consistent with
reports demonstrating that caspase-3 mRNA and protein
expression strongly decrease during brain develop-
ment.48,49 In addition, differential expression of Apaf-1
and caspase-3 during brain maturation has recently been
demonstrated and shown to correlate with susceptibility to
cytochrome c-dependent caspase activation.39 Further-
more, defective cytochrome c-dependent caspase activa-
tion due to diminished or absent Apaf-1 has been reported
in cancer cell lines.50,51 Consistent with these results, we
demonstrate in this study that loss of Apaf-1 correlates with
the inability of cytochrome c to activate caspases. At P10

when Apaf-1 and caspase-3 proteins are highly expressed,
the intrinsic mitochondrial caspase pathway can be
activated on addition of cytochrome c and dATP. In
contrast, when Apaf-1 and caspase-3 levels are markedly
reduced as in the adult retina, cytochrome c can no longer
activate caspases-9 or -3 (Figure 6). It is crucial that
apoptosis in the adult brain is tightly controlled. Rapid
caspase activation and cell death, which occur normally
during neuronal development, has serious implications in
the mature brain. This is exemplified by the many
neurological diseases including retinal disorders in which
excessive apoptosis is observed. The photoreceptor cells
of the retina, `an accessible part of the brain' are mature,
fully differentiated, post-mitotic cells and like other neuronal
cells do not undergo apoptosis under normal physiological
conditions. Down regulation of Apaf-1 to such an extent in
the adult retina as observed in this study may be a
mechanism by which mature photoreceptors retain tight
control of apoptosis. Further down regulation of caspase-3
would protect the cell from apoptosis initiated by granzyme
B or other caspases8,11,12 and may act as a complimentary
mechanism for regulation of apoptosis in the adult retina.

The results of this study are in contrast to recent reports
describing caspase activation in several rat models of

Figure 8 (A) Analysis of intracellular calcium levels in the retinas of
untreated light-induced Balb/c mice and mice treated with 50 mg kg71 of the
calcium channel blocker D-cis-diltiazem. Intracellular calcium levels were
monitored using the fluorescent probe Fluo-3 in photoreceptors from mice
treated with D-cis-diltiazem (i.p.50 mg/kg) in PBS or PBS alone as a control at
the following time points: prior to light exposure (0 h), immediately after light
exposure (2 h) and 3 h of darkness following light exposure. Increased
fluorescence in the FL-1 channel indicates increased levels of calcium. The
percentage of cells displaying increased levels of calcium is shown at each

time point. Results are representative of three independent experiments. (B)
Effect of D-cis-diltiazem, a calcium channel blocker on photoreceptor
apoptosis. Mice were treated with D-cis-diltiazem (i.p.50 mg/kg) in PBS or
PBS alone as a control, 1 h prior to light exposure. Retinas of mice treated with
PBS alone (A ± D). Retina of dark-adapted control mouse (A) does not show
labelling. Photoreceptors of mice sacrificed 6 h in darkness following light
exposure reveals scattered labelling in the ONL (B). Mice sacrificed 14 h (C)
and 24 h (D) after light exposure show significant labelling of photoreceptors.
Retinas of mice treated with 50 mg kg71 of the calcium channel blocker D-cis-
diltiazem (E ± G). Photoreceptors of mice sacrificed 6 (E), 14 (F) and 24 (G) h
of darkness following the light exposure show no labelling. ONL: outer nuclear
layer; INL: inner nuclear layer
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photoreceptor apoptosis. These are the RCS rat,30 rhodop-
sin S334ter rats34 and in apoptosis induced by N-methyl-N-
nitrosourea in Sprague ± Dawley rats.35 The apparent
differences between these studies and this present study
may be explained by the use of two different animal models
i.e. rats and mice. Mice may not activate a caspase-
dependent apoptotic pathway in the retina due to diminished
levels of Apaf-1 and caspase-3, as reported in this study.
Alternatively, stimuli other than light may induce caspase and
Apaf-1 expression, thereby making the mitochondrial
caspase pathway available. A recent study which demon-
strates an increase in Apaf-1 mRNA and protein levels during
traumatic brain injury supports this hypothesis.39 This study
suggests that in order for caspase-dependent apoptosis to
occur in the mature brain, Apaf-1 must be reactivated.
Furthermore, p53 transcriptional activation of Apaf-1 has
been shown to play a pivotal role in the regulation of
apoptosis after neuronal injury.52 The possibility that Apaf-1
and caspase-3 may be reactivated in the rat models of
photoreceptor apoptosis mentioned above, remains to be
elucidated, as investigation of Apaf-1 and procaspase gene/
protein expression during retinal degeneration in these
models has not been carried out, to our knowledge. In
contrast, we examined Apaf-1, procaspases-9 and -3
expression during light-induced photoreceptor apoptosis
and did not detect any significant increase in expression of
these proteins (Figure 5b). This correlates with the repres-
sion of cytochrome c-dependent activation of caspases-9 or
-3 in lysates prepared from light-induced retina (Figure 4b).

There is increasing evidence to support the role of other
proteases such as calpains, cathepsins and the proteo-
some complex in promoting apoptosis-like events.15,53,54

The lack of caspase activation in this model prompted us to
investigate the possible activation of other proteases.
Analysis of the calcium-activated proteases, calpains, in
this study revealed their activation during light-induced
photoreceptor apoptosis (Figure 7). Calpain activation has
been implicated in several neurodegenerative diseases
including alzheimer's disease,55 cerebral ischaemia56 and
cataract formation.57 Moreover, irregular calpain activity has
been detected in the RCS rat, a model for inherited retinal
degeneration.58 Calpains have an absolute requirement for
calcium for activation.59 We have previously described an
increase in intracellular calcium levels during photoreceptor
apoptosis.27 In this present study, intraperitoneal injection
of the calcium channel blocker D-cis-diltiazem completely
inhibits photoreceptor apoptosis demonstrating a key role
for calcium in retinal degeneration (Figure 8b). D-cis-
diltiazem has previously been reported to enhance
photoreceptor survival in the rd mouse model of human
RP.60 However, the mechanism of protection of this drug in
photoreceptors is not yet established although it is
postulated to modulate calcium levels by blocking L-type
voltage gated channels. Here we show that administration
of D-cis-diltiazem completely inhibits the increase in
intracellular calcium (Figure 8a), thereby providing a
potential mechanism for the inhibition of photoreceptor
apoptosis by D-cis-diltiazem in this model.

In conclusion, this study describes apoptosis of photo-
receptor cells in vivo via a pathway that does not involve

activation of several key caspases and cannot be
prevented by caspase inhibitors. The preclusion of caspase
activation during light-induced photoreceptor apoptosis in
the retina appears to be regulated at two levels: by the
prevention of cytochrome c release from the mitochondria
and due to diminished levels of Apaf-1, a critical component
of the apoptosome, and caspase-3, a key executioner of
apoptosis. This study may have implications for therapeutic
strategies aimed at the prevention of photoreceptor
apoptosis and blinding retinal disorders such as RP. These
results taken together with previous reports of caspase
activation during retinal apoptosis imply that photoreceptors
are capable of caspase-dependent and independent cell
death with the initial insult shaping cellular demise.
Therapeutic strategies based on caspase inhibition, there-
fore, may not be as effective as strategies that target
initiating signals of apoptosis, such as calcium channel
blockers, as our findings demonstrate.

Materials and Methods

Retinal light-damage

Adult male Balb-c mice were maintained in the dark for 18 h before
being exposed to constant light. Immediately prior to light exposure
their pupils were dilated with 5% cyclopentolate. The mice were then
exposed to 2 h of cool white fluorescent light at a luminescence level
of 5000 lux. The mice were sacrificed after treatment by cervical
dislocation at the following time points: 1 h after light onset,
immediately after light exposure (2 h) and after 3, 6, 14 and 24 h of
darkness that followed the 2 h light exposure.

Cell lines

Jurkat T-cells were maintained in RPMI containing 10% FCS. 32D
cells were cultured in RPMI containing 10% FCS and 10% WEHI
conditioned media. Agents used to induce apoptosis were anti-human
Fas (300 ng/ml) (Upstate Biotech New York, USA) and exposure to
ultraviolet (UV) irradiation (10 min).

Sub-retinal and intraperitoneal injections

For sub-retinal injections aged-matched (12 weeks) Balb/c mice were
firstly anaesthetised with 750 ml of avertin administered intraperitone-
ally. The right eye of each animal was injected sub retinally under a
surgical microscope with 2 ml of DMSO, 0.9% W/V NaCl buffer
containing 40 ug/ml zVAD-fmk (Bachem Chemicals). The left eye was
treated with 2 ml of DMSO, 0.9% W/V NaCl alone as a control.
Following injection animals were allowed to recover completely prior to
dark adaptation overnight followed by light insult. For intraperitoneal
injections, mice were administered with 50 mg kg71 of Diltiazem
(Calbiochem) in PBS or with PBS alone as a control, 1 h prior to light
exposure.

Terminal dUTP nick end-labelling of fragmented
DNA

DNA strand breaks in photoreceptor nuclei were detected by Terminal
dUTP Nick End-Labelling (TUNEL). Briefly, enucleated eyes were
fixed in 10% buffered formalin for 24 h, and cryo-protected in 30%
sucrose overnight. The eye was then bisected along the vertical
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meridian through the optic nerve and the hemi-cups embedded in
tissue freezing medium (Shandon, PA, USA). Cryosections (5 mm)
were permeablized with 0.1% Triton X-100 (Sigma, UK) in PBS for
2 min on ice, followed by three 5 min washes in PBS. The sections
were then incubated in 50 ml of reaction buffer containing 2.5 mM
CoCl2, 0.1 U/ml terminal deoxynucleotidyl transferase (TdT) in a 0.1 M
Na cacodylate (pH 7.0) buffer and 0.75 nM fluorescein-12-dUTP
(Boehringer Mannheim, Germany). These sections were incubated at
378C for 1 h in a humidified chamber. Following several washes in
PBS, the sections were mounted in mowiol (Calbiochem) and viewed
under a fluorescence microscope (Nikon Eclipse E600) using a
fluorescein isothiocyanate (FITC) filter. Three animals were used for
each of the time points; 0, 6, 14 and 24 h after light exposure.

YVAD-rNA and IETD-rNA cleavage assays

Enucleated eyes were placed in PBS and retinal dissection was
carried out using a watchmaker's forceps. The choroid, sclera and
pigmented epithelium were removed and the retina was then
separated from the vitreous and lens and washed with cold PBS.
Total protein was obtained by homogenising retinas in 50 ml of chilled
lysis buffer containing 10 mM HEPES, pH 7.4, 2 mM MgCl2, 5 mM
EGTA, 50 mM NaCl, 1 mM PMSF, 2 mg/ml aprotinin and 2 mg/ml
leupeptin. The cells were incubated on ice for 20 min and then lysed
by 3 ± 4 cycles of freezing and thawing. Insoluble material was
pelleted by centrifuging at 20 000 6g for 15 min at 48C. The protein
content of each sample was determined by the Bio-Rad protein assay
(Bio-Rad, Hemel Hempstead, UK) using bovine serum albumin as a
standard and 80 mg of protein in 50 ml of lysis buffer was dispensed
into each well of a microtiter plate. An equal volume of 2x reaction
buffer (50 mM HEPES pH 7.4, 0.2% 3-[(3-cholomidopropyl) dimethy-
lammonio] propane-1- sulphonic acid [CHAPS], 20% glycerol, 2 mM
EDTA and 10 mM dithiothreitol [DTT]) was added to each sample
with 200 mM caspase-1 substrate-AcYVAD-rNA (Calbiochem)
(10 mM stock in DMSO), or 200 mM caspase-8 substrateÐAcIETD-
rNA (Calbiochem) (10 mM stock in DMSO). Reactions were
incubated at 378C for 1 h and then cleavage of each substrate was
monitored by liberation of the chromogenic rNA in a SpectraMax-340
plate reader (Molecular Devices, CA, USA) by measuring absorption
at 405 nm.

Western blot analysis

The retina was dissected and total protein was obtained by lysing in
RIPA buffer (50 mM Tris-HCL pH 7.4, 1% NP40, 0.25% sodium
deoxycholate, 150 mM NaCl, 1 mM EGTA, 1 mM sodium orthovan-
date, 1 mM sodium fluoride) containing antipain (1 mg/ml), aprotinin
(1 mg/ml), chymostatin (1 mg/ml), leupeptin (0.1 mg/ml), pepstatin
(1 mg/ml) and PMSF (0.1 mM). The amount of total protein of each
sample was determined by the Bio-Rad protein assay (Bio-Rad, Hemel
Hempstead, UK) using bovine serum albumin as a standard. Sixty mg
of total protein from each sample was electrophoresed on
polyacrylamide gels followed by transfer to nitrocellulose membrane
(Schleicher and Schuell, Dassel, Germany) and incubated overnight
with the appropriate antibodies. Antibodies reactive to caspase-7,
caspase-9, caspase-3, (Cell Signaling Technology, MA, USA),
caspase-8 (Bioquote Ltd. North Yorkshire, UK), caspase-1 (Upstate
Biotechnology), cytochrome c (PharMingen International, San Diego,
CA, USA), Apaf-1 (Santa Cruz), and GAPDH (Advanced Immuno-
Chemical, CA, USA) were used in this study. Membrane development
was achieved using Enhanced Chemiluminescence (ECL) (Amer-
sham, Buckinghamshire, UK).

Subcellular fractionation

Cytosolic and mitochondrial fractions were prepared for detecting
cytochrome c as follows: Briefly, for each sample two retina were
dissected and resuspended in 50 ml of buffer (100 mM HEPES,
500 mM mannitol, 400 mM sucrose, 50 mM EGTA, 1% BSA, 1 mM
DTT, 0.1 mM PMSF, 0.1 mg/ml leupeptin and 1 mg/ml aprotinin). The
retina was then disrupted in a 2 ml glass dounce homogeniser with
25 ± 30 strokes of a B-type pestle (Kontes Glass company, New
Jersey). The resultant homogenate was centrifuged at 1000 6g for
5 min at 48C to remove nuclei. Supernatants were centrifuged at
10 000 6g for 15 min at 48C. The resulting supernatants were used as
the cytosolic fraction for detecting cytochrome c. The pellet was
washed three times in ice-cold PBS and used as a positive control for
mitochondrial cytochrome c.

Preparation of cell-free extracts and cell-free
reactions

Cell-free extracts were prepared from Balb/c retina as follows: A total
of six retinas for each sample were dissected and washed in PBS. The
retinas were resuspended in 150 ml of cell extraction buffer (CEB) and
transferred to a 2 ml dounce homogeniser (CEB; 20 mM HEPES-KOH,
pH 7.5, 10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 1 mM
Dithiothreitol, 100 mM PMSF, 10 mg/ml leupeptin, 2 mg/ml aprotinin).
The retinas were then placed on ice for 20 min and flicked regularly
prior to disruption with 25 ± 30 strokes of a B-type pestle. Lysates were
then transferred to Eppendorf tubes and were centrifuged at
14 000 r.p.m. for 15 min at 48C. The supernatant was removed and
the amount of total protein was determined by the Bio-Rad protein
assay (Bio-Rad, Hemel Hempstead, UK) using bovine serum albumin
as a standard. For cell-free reactions 50 mg of protein was brought to a
final volume of 20 ml in CEB and apoptosis induced by addition of
bovine heart cytochrome c (Sigma, UK) and dATP at final
concentrations of 50 mg/ml and 1 mM respectively. Extracts were
then incubated at 378C for 1, 2 and 3 h to initiate apoptosis. At these
time points extracts were removed and stored at 7708C for
subsequent Western blot analysis.

Measurement of calpain activity by a
¯uorogenicsubstrate assay

A fluorogenic-substrate assay was preformed with Suc-Leu-Tyr-AFC
(Enzyme System Products, CA, USA), a membrane permeable,
calpain-specific substrate. Briefly, retinas were dissected and washed
with cold PBS. Total protein was obtained by homogenising retinas in
50 ml of chilled lysis buffer containing 10 mM HEPES, pH 7.4, 2 mM
MgCl2, 50 mM NaCl, 1 mM PMSF, 2 mg/ml aprotinin and 2 mg/ml
leupeptin. The cells were incubated on ice for 20 min and then lysed
by 3 ± 4 cycles of freezing and thawing. Insoluble material was pelleted
by centrifuging at 20 000 6g for 15 min at 48C. The protein content of
each sample was determined by the Bio-Rad protein assay (Bio-Rad,
Hemel Hempstead, UK) using bovine serum albumin as a standard
and 100 mg of protein in 200 ml of reaction buffer (100 mM imidazole,
pH 7.3, 5 mM L-cysteine, 1 mM mercaptoethanol, 10 mM CaCl2 and
4% DMSO) was dispensed into each well of a microtiter plate. Suc-
Leu-Tyr-AFC substrate (62.5 mM) was added to each well and
reactions were incubated at 378C for 30 min. As an additional control
to ensure that fluorescence activity was calpain specific, the calpain
inhibitor, calpeptin (100 mM) was added to one of the wells (24 h),
15 min prior to addition of the substrate. Calpain activity was detected
by measuring the proteolytic cleavage of the fluorogenic substrate
using a SpectraMax Gemini fluorometer (Molecular Devices, CA, USA)
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with excitation and emission wavelengths of 400 nm and 505 nm
respectively.

Intracellular free calcium measurement

Intracellular calcium levels were determined using the intracellular
calcium probe, fluo-3 AM (acetoxymethyl ester) (Molecular Probes,
Leiden, The Netherlands). Cells were incubated in darkness with fluo-
3 (250 nM), prepared from a 500 mM stock, for 15 min at 378C and
fluorescence measured in FL-1 (530 nm) on a Becton-Dickenson
FACScan flow cytometer with excitation at 488 nm.
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