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Abstract
Steroid hormones play an important role in the regulation of
numerous physiological responses, but the mechanisms that
enable these systemic signals to trigger specific cell changes
remain poorly characterized. Recent studies of Drosophila
illustrate several important features of steroid-regulated
programmed cell death. A single steroid hormone activates
both cell differentiation and cell death in different tissues and
at multiple stages during development. While several steroid-
regulated genes are required for cell execution, most of these
genes function in both cell differentiation and cell death, and
require more specific factors to kill cells. Genes that regulate
apoptosis during Drosophila embryogenesis are induced by
steroids in dying cells later in development. These apoptosis
genes likely function downstream of hormone-induced
factors to serve a more direct role in the death response.
This article reviews the current knowledge of steroid signaling
and the regulation of programmed cell death during
development of Drosophila. Cell Death and Differentiation
(2000) 7, 1057 ± 1062.
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Steroid hormones are important regulators
of programmed cell death

Steroid hormones serve a critical role in the maintenance of
homeostasis. Steroids regulate metabolism, reproduction,
and development in animals that are as different as insects
and humans. During animal development, steroids trigger
distinct responses including cell differentiation and pro-
grammed cell death. These hormones have been linked to
numerous human health problems, and defects in hormone-
triggered programmed cell death may result in the survival of
tumor cells.1 In vertebrate organisms, steroids including

androgens, estrogens, progesterone, and glucocorticoids
regulate cell death.2 ± 5 Glucocorticoid regulation of pro-
grammed lymphocyte death has served as a paradigm for
steroid activation of apoptosis, and this response is
dependent on glucocorticoid receptor function.6 ± 10 In
invertebrates, the steroid 20-hydroxyecdysone (ecdysone),
and its receptor, have been implicated in the activation of
programmed cell death during insect development.11 ± 14

Steroids hormones appear to regulate programmed cell
death by a variety of mechanisms. Most studies have
reported that steroids serve as survival factors, and that
hormone withdrawal results in the activation of programmed
cell death. Examples of this mechanism include androgens
in the prostate,15 and ecdysteroids in the insect nervous
system.13 Alternatively, increases in steroids also activate
programmed cell death. In Drosophila, increases in
ecdysteroids trigger cell death in larval midguts and
salivary glands.16 Glucocorticoid regulation of thymocyte
cell death is complex and has been reported to be under
both positive and negative control by this hormone, but
recent in vivo studies indicate that a decrease in steroid
titer regulates thymocyte apoptosis.17 While little is known
about the steroid-regulated genes that control thymocyte
and other vertebrate cell deaths, recent studies of
Drosophila are providing insights into the genetic mechan-
isms underlying hormone-triggered programmed cell death.

Steroid regulation of developmental
changes at the onset of Drosophila
metamorphosis

The Drosophila life-cycle consists of embryonic, three larval
instar, prepupal, pupal, and adult developmental stages.
Pulses of the steroid hormone ecdysone punctuate each of
these life stages, and regulate important transitions in
development.18 During the onset of metamorphosis, fluctua-
tions in ecdysone titer trigger dynamic cellular changes that
are required to transform a larva into an adult (Figure 1). At the
end of the third larval instar, an increase in ecdysone titer
induces the formation of a prepupa.19 ± 21 The ecdysone titer
then drops to a low level in the mid-prepupal stage,20,21, and
increases again 10 ± 12 h following puparium formation.20,22

This pulse of ecdysone triggers future adult head eversion,
which marks the beginning of pupation.20,22 The ecdysone
titer then decreases at the onset of pupation before another
large pulse of hormone occurs during pupal development.21

Metamorphosis of Drosophila involves the destruction of
most of the larval tissues, and differentiation and
morphogenesis of the tissues that form the adult fly
(Figure 1). When the third instar larva turns into a
prepupa, many tissues initiate metamorphic changes in
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synchrony with the rise in ecdysone titer. Imaginal discs
undergo morphogenesis to form future adult appendages,
and adult flight muscles appear in the anterior region of the
prepupa.23,24 While these changes in adult structures
occur, several tissues are destroyed including the anterior
larval muscles and the larval midgut.23,24 Similarly,
numerous cell and tissue changes are also induced when
the ecdysone titer rises at the prepupal-to-pupal transition.
The adult appendages deposit procuticle,25 the larval
musculature completes its histolysis in the abdomen, the
larval foregut epithelium is replaced by the adult foregut,
and the larval salivary glands die while adult salivary
glands initiate morphogenesis.23,24 While many changes
associated with the transformation of a larva into an adult
fly occur during the prepupal stage, additional details of
adult formation are elaborated during the 3 days between
pupation and adult eclosion.

Ecdysone triggers stage- and cell-specific changes,
indicating that fluctuations in this systemic signal alone
are not sufficient to determine the nature of the cellular
response. Analyses of the mechanisms underlying ecdy-
sone-regulated responses have been restricted to a limited
number of tissues. Studies of ecdysone-triggered imaginal
disc evagination have served as a useful model for
morphogenesis.26,27 The nervous system, larval midgut,
and larval salivary glands have been useful for studies of
steroid regulation of cell death in Drosophila.13,16 While
most studies of cell death have emphasized the common
features of apoptosis, it should be noted that at least three
types of programmed cell death occur during development
of evolutionarily diverse organisms.28,29 During insect
development, both apoptotic and autophagic cell death
have been widely reported.28 Comparison of lymphocyte
apoptosis and insect intersegmental muscle autophagy
indicate that these physiological cell deaths occur by
distinct mechanisms,30 but recent studies of Drosophila
larval salivary glands suggest that these two types of cell
death utilize some common mechanisms.

Drosophila salivary glands have been particularly useful
as a model for steroid signaling, and possess several

attributes making them an ideal system for studies of
programmed cell death. Salivary gland cells die in a rapid
and synchronous manner in response to the pulse of
ecdysone that peaks 12 h following puparium formation.16

These cells exhibit dynamic changes in the tubulin and
actin cytoskeleton, and accumulate acid phosphatase
activity preceding their demise which appears to be
mediated by lysosome-derived autophagic vacuoles.31,32

Markers of apoptosis including nuclear acridine orange
staining and DNA fragmentation are detected by 14 h
following puparium formation in salivary glands.16 Further-
more, salivary glands that are cultured in a physiologically
elevated level of 20-hydroxyecdysone undergo pro-
grammed cell death.16

Steroids signal by triggering a genetic
regulatory hierarchy

The mechanisms of steroid signaling have been extensively
studied in Drosophila larval salivary glands because of the
giant polytene chromosomes that form ecdysone-induced
puffs reflecting a transcriptional regulatory hierarchy. Waves
of chromosome puffs (decondensation of chromatin) accom-
pany the late third instar larval and prepupal pulses of
ecdysone. A series of elegant studies led to a model for
genetic regulation of chromosome puffing.33 ± 35 According to
this model, the ecdysone receptor complex directly induces a
small set of early puff genes, and the protein products of these
genes then repress their own activity and induce a large set of
secondary late response genes.

The isolation and characterization of the ecdysone
receptor and ecdysone-regulated puff genes have pro-
vided substantial support for the model proposed based on
chromosome puffing.36,37 The EcR38 and usp39 ± 41 genes
both encode members of the nuclear hormone receptor
family of proteins, and heterodimerize to form the ecdysone
receptor.42,43 This receptor complex binds to DNA, and
activates transcription of early puff genes, as early puffs
and the genes encoded by these genetic loci are not
properly induced in EcR and usp mutants.44,45 The
characterization of the BR-C, E74, and E75 early puff
genes provided further support of the puffing model for
ecdysone signaling.46 ± 48 These early puff genes are
complicated and encode multiple isoforms of transcription
factor proteins by alternative promoter usage and splicing.
BR-C encodes zinc finger proteins, E74 encodes members
of the ETS family of DNA binding proteins, and E75
encodes nuclear hormone receptor family member zinc
finger proteins. E74 and E75 proteins bind to both early and
late puff chromosome loci.49,50 Late puff genes have not
been extensively characterized, but the isolation of the L71
late genes51,52 have been useful for testing the tenets of
the steroid signaling model that was based on chromosome
puffing. BR-C and E74 mutations impact transcription of
late target genes.53 Furthermore, BR-C and E74 proteins
bind to glue and L71 gene regulatory elements, providing a
direct link between these DNA binding proteins and the
regulation of target gene transcription.54 ± 56

The steroid regulatory hierarchy is activated by different
pulses of ecdysone during development (Figure 2). The

Figure 1 Fluctuations in the ecdysone titer during the onset of
metamorphosis trigger stage- and cell-specific biological responses.
Consecutive increases in ecdysone at the end of the third larval instar and
12 h later trigger the formation of a prepupa and pupa. These pulses of
hormone also coincide with numerous tissue rearrangements including the
death of larval cells and the formation of adult cells
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increase in ecdysone titer at the end of the third larval
instar regulates the transcription of glue and late genes in
the salivary gland.51,52,57,58 The ecdysone titer then drops
to a low level in midprepupae, enabling the induction of the
nuclear hormone receptor bFTZ-F1.59 bFTZ-F1 serves as
competence factor that enables the reinduction of the BR-C
and E74 early genes, and the stage-specific induction of
E93 by the pulse of ecdysone 12 h after puparium
formation in salivary glands.59,60 While late puffs are
observed at this stage of development,61 none of these
late genes have been identified based on puffing. However,
targets of the early genes that are induced at this stage
have been identified.62,63

Steroid-regulated genes function in
programmed cell death

Several ecdysone-regulated genes function in programmed
cell death (Figure 2). The EcR, usp, bFTZ-F1, BR-C, E74, and
E93 genes have been implicated in the regulation of
programmed cell death in a variety of tissues including the
midgut, salivary glands, and nervous system.13,14,45,60,62 ± 64

EcR, usp, bFTZ-F1, BR-C, and E74 are pleiotropic, however,
and function in cell responses other than death including the
proper formation of adult cells.44,60,65 Significantly, E93
appears to function more specifically in the destruction of
larval tissues.63 E93 encodes a novel nuclear protein that is
expressed in larval midgut and salivary gland cells
immediately prior to ecdysone induction of their death.
Furthermore, E93 mutants have defects in larval salivary
gland cell destruction, and expression of E93 is sufficient to
induce programmed cell death. If one reconsiders the steroid
regulatory hierarchy in salivary glands, a cell death signaling
hierarchy emerges (Figure 2). The ecdysone receptor
complex and bFTZ-F1 regulate BR-C, E74, and E93
transcription in larval salivary glands immediately prior to the

initiation of cell destruction.59,60 E93 mutants possess
decreased transcription of the BR-C and E74 genes, and
each of these early genes impact the transcription of
programmed cell death genes prior to the stage that larval
salivary glands initiate destruction.62,63

Apoptosis genes are regulated by
steroid-induced genes prior to
programmed cell death

Drosophila possesses the programmed cell death pathway
components that have been conserved in organisms as
different as nematodes and humans.66 Caspases including
DCP-1, Dredd, DrICE, Dronc, and Decay,67 ± 72 the CED4/
APAF-1 homolog Ark,73 ± 75 the CED-9/Bcl-2 family member
Drob-1/Debcl/dBorg-1,76 ± 78 and the inhibitors of apoptosis
DIAP1 and DIAP279 have been identified. In addition, the
novel rpr, hid, and grim cell death genes have been isolated
and molecularly characterized.80 ± 82

Several apoptosis genes have been implicated in
ecdysone regulated programmed cell death (Figure 2). An
increase in rpr and grim transcription foreshadows
ecdysone induction of neuronal cell death,83 and mutations
that remove these genes prevent these neurons from
dying.84 In larval midguts and salivary glands, rpr and hid
transcription increase prior to ecdysone-regulated pro-
grammed cell death.16 The core cell death machinery also
appears to be involved in ecdysone-regulated programmed
cell death. Inhibition of caspases by expression of the
baculovirus inhibitor p35 blocks midgut and salivary gland
cell death.16 In addition, ark and dronc transcription
increase immediately prior to programmed cell death
salivary glands.63

Ecdysone-regulated genes are required for proper
transcription of apoptosis genes in salivary glands. rpr
transcription is directly regulated by the ecdysone receptor
complex, but BR-C function is also required for maximum
levels of rpr mRNA transcript in dying larval salivary
glands.62 While mutations in the E74A gene do not impact
rpr transcription, both BR-C and E74A are required for
proper transcription of hid in dying salivary glands.62 E93
mutants also impact the levels of several important
apoptosis genes in salivary glands.63 Mutations in E93
result in decreased levels rpr, hid, ark, dronc, and crq RNA
transcription. While E93 mutants do not impact the
transcription of EcR or bFTZ-F1, these mutants do impact
transcription of BR-C and E74A. E93 protein binds to sites
in the salivary gland polytene chromosomes that contain
both steroid-regulated genes and programmed cell death
genes.63 These data suggest that E93 regulates the
apoptosis genes by either directly impacting their transcrip-
tion, or indirectly by impacting early genes such as BR-C
and E74 that in turn regulate cell death gene expression.

Concluding remarks

The regulation of programmed cell death plays a critical role
during animal development by functioning in the destruction of
unneeded cells and tissues.85,86 Proper implementation of a
cell death response is also important for the removal of

Figure 2 Steroid genetic regulatory hierarchy in Drosophila larval salivary
glands. The rise of ecdysone at the end of the third laval instar triggers a
change in salivary gland glue to late gene transcription, and this change is
mediated by the ecdysone receptor (encoded by the EcR and usp genes) and
the BR-C, E74, and E75 early puff genes. The subsequent increase in
ecdysone titer at the end of prepupal development triggers caspase-mediated
programmed cell death. This steroid-triggered cell death is regulated by the
ecdysone receptor complex and bFTZ-F1, which enable ecdysone induction of
the BR-C, E74, and E93 genes. These regulatory factors are required for
proper induction of the cell death genes rpr, hid, ark, dronc, and crq in salivary
glands
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abnormal cells during development including tumor cells.1

Studies of Drosophila larval salivary glands have been
emphasized in this review because of the utility of this tissue
for studies of steroid signaling. However, steroids are only one
of many developmental signals that activate programmed cell
death in Drosophila and other organisms.87 Furthermore,
many possible regulatory pathways could modulate cell death
following the initial activation of death signaling. While cell
death is regulated at the post-transcriptional level in
Drosophila,88 ± 90 emphasis has been placed on transcrip-
tional control of cell death in this review, since steroid activity
is mediated by nuclear receptor DNA binding proteins.

Larval tissues are destroyed by programmed cell death
during Drosophila metamorphosis. The coordination of
ecdysone induction of both cell death and cell differentia-
tion during metamorphosis indicates that fluctuations in this
systemic signal alone can't be responsible for the
complexity of cell responses. Rather, expression of the
proper combinations of regulatory proteins appears to be
critical for the appropriate activation of genes that play a
more direct role in the cell response. Some of these
regulatory proteins, such as EcR, usp, bFTZ-F1, BR-C, and
E74, regulate both cell differentiation and cell death,
indicating that other more specific factors must specify
the type of cell response to steroid. The E93 gene appears
to specify ecdysone induction of cell death during
metamorphosis, but it also appears to require other
regulatory factors to properly activate the programmed
cell death response. Many of the genes that function in the
regulation of apoptosis during Drosophila embryogenesis
are also involved in steroid activation of larval salivary
gland cell death. Clearly, one of the most difficult
challenges is to identify the novel components of the
signaling pathways that lead to cell death, and integrate
this knowledge into the development of the organism. The
conservation of steroid signaling and apoptosis pathways in
diverse organisms indicates that future genetic studies of
Drosophila should lead to advances in understanding the
mechanisms of programmed cell death and its regulation in
higher organisms.
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