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Abstract
The p53 tumor suppressor gene is a sequence-specific
transcription factor that activates the expression of genes
engaged in promoting growth arrest or cell death in response
togenotoxic stress. A possible role for p53-related modulation
of neuronal viability has been suggested by the finding that
p53 expression is elevated in damaged neurons in acute
models of injury such as ischemia and epilepsy and in brain
tissue samples derived from patients with chronic neurode-
generative diseases. Moreover, the absence of p53 has been
shown to protect neurons from a wide variety of acute toxic
insults. Signal transduction pathways associated with p53-
induced cell death are being unraveled and suggest that
intervention may prove fruitful in maintaining neuronal
viability and restoring function following cytopathic insults.
Cell Death and Differentiation (2000) 7, 868 ± 879.
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The p53 gene

The p53 tumor suppressor gene encodes a nuclear
phosphoprotein that functions as a key regulator of cell cycle
progression and apoptosis. p53 is also recognized as
belonging to a pathway responsible for DNA damage repair,

which is critical for maintaining genomic stability. Loss or
inactivation of the p53 tumor suppressor gene occurs in
almost half of all human tumors1 and is considered a
fundamental, predisposing event in the pathogenesis of
many cancers. Patients carrying germ line mutations in p53
are at higher risk for developing a variety of tumors,2,3 and
mice deficient in p53 display precocious tumor develop-
ment.4 ± 7

The p53 protein is upregulated in response to a diverse
array of cellular stresses, including DNA damage, hypoxia,
oxidative stress, ribonucleotide depletion and oncogene
activation.8,9 p53 protein levels are largely regulated in
response to injury by changes in protein degradation.
Recent studies have demonstrated that p53 protein levels
are regulated by the MDM2 protein through a ubiquitin-
dependent, proteasome-mediated pathway.10,11 Stress
signals result in stabilization of p53 protein through
inhibition of MDM2-mediated degradation. The interaction
between p53 and MDM2 is governed by phosphorylation
reactions12,13 and through protein ± protein interactions
such as those involving the p14ARF protein.14,15 The
E2F1 transcription factor, which is involved in cell cycle
progression and under certain circumstances mediates
apoptosis, can also regulate p53 stabilization, in part,
through transcriptional activation of ARF expression.16

Thus, a diverse but partially overlapping series of
regulatory pathways may influence p53 protein levels.
These regulatory pathways have been largely defined for
non-neuronal cells, and there is little information regarding
the regulation of p53 activity in neurons.

In response to cellular stress, p53 induces its biological
response through the transcriptional transactivation of
specific target genes. These downstream effectors have
been characterized with respect to p53-mediated growth
arrest,17 but the pathways associated with p53-mediated
apoptosis remain obscure.18 In addition to its transcriptional
transactivating activity, p53 may promote apoptosis by
repressing the expression of select genes.19,20 This
particular action of p53 is not well understood, but it does
not appear to depend on the presence of p53 consensus
binding sites in the promoter region of repressed genes.
Moreover, p53-mediated apoptosis may also occur through
transcription-independent pathways requiring direct
protein ± protein interactions.21,22

p53 expression changes in response to
neuronal injury

The demonstration that p53 promotes apoptosis has
important implications for the central nervous system (CNS),
where cell death is observed normally during development, in
response to injury, and in neurodegenerative disorders such
as Alzheimer's and Huntington's disease.23 ± 26, Neuronal
injury, especially damage mediated by excitotoxicity, has
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been associated with increased production of reactive oxygen
species,27 ± 30 and accumulation of single-strand DNA
breaks.31 DNA strand breaks are capable of inducing p53
accumulation,32,33 which has prompted investigators to begin
examining p53 for a role in regulating neuronal cell death.

Alterations in p53 mRNA and protein expression have
been associated with neuronal damage in a variety of in
vivo and in vitro model systems (Table 1). The in vivo
models include acute injury and neurodegenerative dis-
ease. The range of acute injuries that results in p53
activation is diverse. These include adrenalectomy, which
selectively promotes cell death in dentate granule cells in
the hippocampus, ionizing radiation, methamphetamine
administration, photochemical injury to the cerebral cortex,
seizure induction produced by administration of excitatory
amino acids, ischemic injury resulting from ligation of the
middle cerebral artery and traumatic brain injury produced
by direct impact to the cerebral cortex. In nearly all of these
studies increased levels of p53 immunostaining were
demonstrated in neurons. In several cases increased
expression of the p53 protein was confirmed by protein
immunoblotting.34,35

Among the acute injury models, damage resulting from
neuronal stimulation by excitatory amino acids or corre-
sponding receptor agonists has been strongly associated
with p53 accumulation. The systemic injection of kainic acid,
a potent excitotoxin which produces seizures associated
with a defined pattern of neuronal cell loss, induced p53

expression in neurons exhibiting morphological evidence of
damage;36,37 pretreatment with a protein synthesis inhibitor
prevented both kainic acid-induced p53 expression and
neuronal damage. Activation of glutamate receptors by
intrastriatal infusion of either N-methyl-D-aspartate (NMDA),
the NMDA receptor agonist quinolinic acid (QA) or kainic
acid produced a significant elevation in p53 levels in striatal
neurons.35,38,39 These results suggest that p53 induction
may be linked to apoptosis due to excitotoxicity associated
with seizures and Huntington's disease.

Elevated expression of the p53 gene has also been
observed following experimental traumatic brain injury. As
early as 6 h post-injury, p53 mRNA is induced predomi-
nantly in neurons that are vulnerable to traumatic brain
injury, such as those in the contused cortex, lateral and
medial geniculate nuclei of the thalamus, and the CA3 and
hilar neurons of the hippocampus.40 Interestingly, the
administration of magnesium, which has been shown to
be neuroprotective in experimental models of traumatic
brain injury, significantly reduced p53 mRNA expression in
a select population of injured neurons.41 Transient or
permanent occlusion of the middle cerebral artery causes
ischemia-induced cell death in striatal and cerebral cortical
neurons, which is associated with a significant increase in
the expression of p53 mRNA42 and protein.43 In the cortex,
p53 immunoreactivity was observed specifically in cortical
neurons in areas surrounding the ischemic core (penum-
bra) one day after occlusion. Three days following middle

Table 1 Various forms of brain injury or pathology associated with p53 induction

Condition p53 Detected as Neurons affected References

In vivo
Adrenalectomy mRNA/protein DG 154

Alzheimer's disease protein Cxb 44,45,155

Ab transgenic mouse protein Cx, Hp 46

Amyotrophic lateral sclerosis protein SMN 45

Angelman Syndrome protein Cb, Hpc 50

Down's Syndrome protein Cx, Cb 45,52

Hereditary DNA repair disorders protein Cb 156

Ionizing radiation protein Ob, Cx, Cb, Hp 34

Ischemia mRNA/protein Cx, St, Rt 42,43,157 ± 159

Methamphetamine protein St 62

Photochemical injury protein Cx 160

Rb de®ciency protein NSa 65

Seizures/excitotoxicity mRNA/protein HP, Th, Am, Cx, PCx, St 35 ± 39,161

Traumatic brain injury mRNA Cx, Hp, Th 40,41,162

In vitro
Cytosine arabinoside protein Sp, Cb 55,70

Dopamine p53 phosph. Cb 163

Glutamate mRNA/protein Cb 53,54

6-Hydroxydopamine protein PC12 cells 164

Hypoxia protein Cx 57

Ionizing radiation protein Hp 56

NGF withdrawal protein Sp, PC12 cellsd 74,165

aNot speci®cally stated. Ref. 65 indicated that immunocytochemical expression of p53 was increased in the central nervous system of Rb-mutant
mice. Also, the absence of p53 inhibited cell death (TUNEL positive cells) in the central nervous system of Rb-mutant mice. bThese authors
reported that immunohistochemical staining demonstrated increased p53 expression and DNA fragmentation in overlapping populations of cortical
neurons, and cortical and white matter glial cells distributed in regions damaged by neurodegeneration44 A separate study demonstrated increased
p53 in glial cells only.155 cp53 immunoreactivity was detected in neurons in both the mouse model of Angelman Syndrome and in postmortem
samples from patients with Angelman Syndrome. dp53 immunoreactivity shifted from the cytoplasm to the nucleus in response to NGF-induced
neuronal differentiation in PC12 cells.165 These abbreviations indicate the brain region in which p53 was detected or the region from which cultured
neurons were established. Am, Amygdala; Cb, cerebellum; Cx, cerebral cortex; DG, dentate granule neurons; Hp, hippocampus; Ob, olfactory bulb;
PCx, parietal cortex; Rt, Retina; Sp, sympathetic neurons; Ss, sensory; SMN, spinal motor neurons, St, striatum; Th, thalamus

p53 in neuronal cell death
RS Morrison and Y Kinoshita

869

Cell Death and Differentiation



cerebral artery occlusion, many neurons in the penumbra
region were positively stained by terminal transferase-
mediated biotinylated-UTP nick end labeling (TUNEL
staining). Since TUNEL labeling assesses DNA fragmenta-
tion associated with the late stages of cell death, and this
occurred three days after occlusion, it is consistent with the
concept that p53 may promote neuronal cell death in
response to ischemia.

p53 immunoreactivity has also been detected in brain
tissue derived from animal models of human neurodegen-
erative disease or from patients that have been diagnosed
with a neurodegenerative disorder. Patients with Alzhei-
mer's disease44,45 show increased p53 immunoreactivity in
morphologically damaged neurons consistent with the
detection of extensive p53 immunoreactivity in neurons
from mice overexpressing the beta-amyloid peptide (Ab 1 ±
42).46 Abnormalities in the regulation of Ab expression and
processing have been associated with the development of
Alzheimer's disease and neuronal degeneration.47 ± 49 In
this particular mouse model, nuclear p53 immunoreactivity
was detected in neurons that displayed cytoplasmic
expression of the Ab peptide and were TUNEL positive. A
subset of neurons displayed both nuclear and cytoplasmic
localization of the p53 protein whereas some neurons
displayed only cytoplasmic localization. It is not clear from
this report whether neurons exclusively expressing cyto-
plasmic p53 were also Ab and TUNEL positive. The
relationship between cytoplasmic p53 accumulation and
neuronal cell death is currently unknown. However, this
represents an interesting observation in light of recent
findings that mutation of the E6-AP ubiquitin ligase in a
mouse model of Angelman syndrome results in increased
cytoplasmic abundance of the p53 protein in hippocampal
pyramidal neurons and cerebellar Purkinje neurons.50

Animals expressing the Angelman mutation display motor
dysfunction, inducible seizures and a deficiency in
contextual learning. Increased p53 immunoreactivity was
also observed in cerebellar Purkinje cells in the brain of a
patient diagnosed with Angelman syndrome. Thus, in-
creased levels of the p53 protein in Angelman syndrome
resulting from abnormalities in the ubiquitination process
may contribute to neuronal dysfunction. The brains of
patients with Down's syndrome, a genetic disorder
manifesting a similar pathology to Alzheimer's disease,
have also been shown to express elevated levels of
apoptosis effectors including the p53 protein.45,51,52

Increased p53 immunoreactivity has been localized in
both neuronal and glial cell nuclei in Down's syndrome
brain,45 suggesting that p53-mediated cell death pathways
may not be restricted to neurons in certain neurodegen-
erative disorders. These results demonstrate that increased
levels of the p53 protein are commonly associated with
neuronal damage and cell death in mouse models of brain
injury and neurodegeneration as well as in brain tissue
samples derived from patients with neurological diseases.

The results obtained with in vitro models of neuronal
injury are consistent with the data described above for the
in vivo models. Excitotoxicity, which figured so prominently
in the whole animal studies, is a potent inducer of p53
protein in cultured cerebellar granule neurons.53,54 Another

potent stimulus for elevating p53 expression in cultured
neurons is DNA damage induced by cytosine arabino-
side54,55 or ionizing radiation.56 Hypoxia in culture, which
models the ischemia produced by middle cerebral artery
occlusion, increases p53 protein expression in rat
embryonic cortical neurons.57 The upregulation of p53 is
associated with neurons exhibiting morphological evidence
of apoptosis and the extent of upregulation is dependent
upon the duration of hypoxia. Stress induced changes in
p53 expression are not limited to central nervous system
neurons. For example, neuronal cell death induced by
nerve growth factor withdrawal dramatically elevates p53
protein levels in cultured neonatal sympathetic neurons.58

These results collectively demonstrate that: (1) p53
mRNA or protein can be accumulated in multiple neuronal
populations in both the peripheral and central nervous
system; and (2) p53 is upregulated in response to a diverse
array of cellular insults ranging from hypoxia, excitotoxicity
to intracellular expression of the Ab peptide. It is not
presently known if these divergent cellular insults activate
p53 by initiating damage to a common cellular component
(i.e., oxidative damage to DNA). Nevertheless, these
studies collectively suggest that p53 is widely involved in
neuronal death in response to different forms of acute
insults and neurological disorders.

The relationship between p53 expression
and neuronal cell death

The relationship between p53 expression and neuronal cell
death has been evaluated in numerous models of injury and
disease (Table 2). p53-deficient mice or neurons derived from
these mice have been used most often, but inhibitors of p53
expression or p53 function have also been used to evaluate
the role of p53 in the context of neuronal injury. The absence
of p53 has been shown to protect neurons in vivo from a wide
variety of toxic insults including focal ischemia,59 ionizing
radiation,34,60 MPTP-induced neurotoxicity,61 methampheta-
mine-induced neurotoxicity62 and adrenalectomy.63 A role for
p53 has also been demonstrated for apoptosis associated
with abnormal development. Homozygous deletion of the
retinoblastoma gene (Rb) results in extensive apoptosis in the
peripheral and central nervous system,64 which is accom-
panied by increased levels of the p53 protein.65 Backcrossing
Rb-mutant mice onto a p53 null background prevents cell
death in the CNS of Rb-null embryos. p53 is also essential for
developmental neuronal death in certain subpopulations of
neurons.58 The naturally occurring developmental cell death
of sympathetic neurons is dramatically reduced in p537/7 and
even p53+/7 animals.

Cultured neurons deficient in both p53 alleles exhibit
protection from many toxic insults including DNA damaging
agents,55,66 ± 70 ionizing radiation,66,71 glutamate,53,54,72

hypoxia,57,73 and NGF withdrawal.58,74 In contrast to these
results, cerebellar neurons lacking p53 die when trans-
ferred to a low potassium medium67 and postnatal cortical
and hippocampal neurons also die after staurosporine
exposure in a p53-independent manner.71

Clearly, the absence of p53 does not protect neurons
against all forms of toxic insults. Cerebellar granule neuron
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death induced by methylazoxymethanol is not alleviated in
p53-null mice.60 Another example relates to the role of p53-
mediated apoptosis in amyotrophic lateral sclerosis (ALS), a
neurodegenerative disease characterized by degeneration
and death of motor neurons in the anterior horn of the spinal
cord, lower brainstem, and cerebral cortex. Transgenic mice
that express the copper-zinc superoxide dismutase-1 (Cu-
Zn SOD1) mutations found in familial ALS kindred show
progressive paralysis as a result of motor neuron cell
loss.75 ± 77 To assess the role of p53-mediated apoptosis in
ALS, mice deficient in both p53 alleles (p537/7) were
crossed with transgenic mice expressing the G93A mutation
(G93A+) to create hybrid transgenic knockout mice (G93A+/
p537/7). Unexpectedly, the absence of p53 in these
transgenic mice had no statistically significant effect on
disease onset, survival, or the extent of motor neuron
degeneration and showed only a minimal effect on disease
progression.78 This study provides no convincing evidence
that p53 is involved in cell death in the G93A+ transgenic
mouse model of familial ALS. The G93A+ transgenic mouse
is modeled on a familial form of ALS linked to the SOD1
gene, which represents only a fraction of familial ALS
kindred that account for only 5 to 10% of all ALS cases.
Thus, we cannot rule out the involvement of p53 in other
forms of ALS neuropathology. Nonetheless, despite
evidence that p53 plays an important role in mediating cell
death after acute neuronal injury, there is no definitive
evidence to support such a role for p53 in late onset
neurodegenerative diseases. It would be of great interest to
examine whether p53-deficiency protects neurons and
maintains behavioral integrity in Ab transgenic mice46 and
in the mouse model of Angelman syndrome.50

The role of p53 in excitotoxicity-induced cell death is
now generally accepted, although there have been

occasional exceptions. In one well-characterized model of
excitotoxicity, systemic injection of kainic acid produces
seizures associated with a defined pattern of neuronal cell
loss and increased p53 expression in neurons exhibiting
morphological evidence of damage.36,37 Neuronal cell
death did not occur when this excitotoxicity model was
applied to p53 knock-out mice, demonstrating that p53
induction was causally related to declining viability.79 These
findings were challenged recently by a report80 suggesting
that the lack of damage in the p53-deficient mice was
attributable to the presence of a protective gene(s)
introduced from the C57BL/6 strain used in the generation
of the p53 deficient mouse line.4 Schauwecker and
Steward80 reportedly induced comparable seizures in pure
C57BL/6 mice and did not see any evidence of neuronal
damage in the CA3 or CA1 subregion. In addition, an
independent p53-deficient mouse line (on a C57BL/66129/
Sv background81 but not on the 129/SvEMS background as
cited80) did not show protection against seizure-induced
neuronal cell death as opposed to the significant protection
observed in the p53-deficient mice on a 129/SvEv6C57BL/
6 background.79 The basis for the apparent discrepancy
between these reports79,80 is not entirely clear.

Although C57BL/6 mice are known to be less
susceptible to kainate-induced seizures82,83 and seizure-
induced damage,84 Morrison and collegues79 demonstrated
significant neuronal damage in the CA3 and CA1
subregions of the hippocampus in p53 wild-type mice
(129/SvEv6C57BL/6 background) despite the genetic
contribution from the C57BL/6 strain. Others have also
reported significant induction of neuronal damage in the
CA3 and CA1 subregions of the hippocampus in C57BL/6
mice in response to kainate-induced seizures.85,86 Thus, it
is not clear why Schauwecker and Steward failed to

Table 2 Effect of p53 deletion or inhibition on neuronal survival

Condition Protection Neurons affected References

In vivo
Adrenalectomy yes DG 63

Amyotrophic lateral sclerosis no SMN 78

Developmental cell death yes Sp 58

Ionizing radiation yes NSb, Cb 34,60

Ischemia yes Cx 59

Methamphetamine yes St 62

Methylazoxymethanol no Cb 60

MPTP yes St 61

Rb de®ciency yes NSa 65

Seizures/excitotoxicity yes/no Cx, Hp, St, Th 35,38,79,80

In vitro
Bleomycin yes Cb 68

Camptothecin yes Cx, Hp 69

Cytosine arabinoside yes Sp, Cb 55,67,70

Glutamate yes Cx, Hp, Cb 53,54,72

Hypoxia yes Cx 57,73

Ionizing radiation yes Cx, Hp, Cb 66,71

Low potassium no Cb 66

NGF withdrawal yes/no Sp, Ss 58,74,166,167

Staurosporine no Cx 71

aNot speci®cally stated. Ref. 65 indicated that immunocytochemical expression of p53 was increased in the central nervous system of Rb-mutant
mice. Also, the absence of p53 inhibited cell death (TUNEL positive cells) in the central nervous system of Rb-mutant mice. bNot speci®cally stated.
Ref. 34 indicated that p537/7mice were resistant to irradiation-induced cell death in the developing nervous system
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observe damage at least to the CA3 subregion of
C57BL/6 mice in contrast to these other reports. More-
over, despite the contrasting results obtained with the two
different p53 knock-out mice, both mouse lines were
eventually shown to possess a C57BL/6 genetic back-
ground (C57BL/66129/SvEv4 vs C57BL/66129/Sv87).

It is well recognized that there is a substantial genetic
variability among the 129 substrains with documented
phenotypic differences.88 The variable contribution from
the C57BL/6 background in the two p53 knock-out mouse
strains in combination with other variations in the genetic
make-up of the mice used in these experiments make it
difficult to draw firm conclusions regarding the role of the
purported protective genes in kainic acid-induced neuronal
damage seen with one p53 knock-out mouse strain but not
the other. Because of such genetic variability, it is
conceivable that the excitotoxic insult induced in the p53-
deficient mouse line on the C57BL/66129/Sv back-
ground80 was of such intensity that the resulting cell death
was necrotic and independent of any apoptotic signaling
pathways. Clearly, there are conditions in which excitatory
stimulation can promote neuronal cell death independently
of p53 and other cell death mediators. Indeed, Morrison et
al79 did report necrotic damage in the CA3 subregion of
some p53-deficient mice.

Independent results confirming a role for p53 in
excitotoxic cell death comes from studies involving the
direct injection of excitatory amino acids into the striatum.
Intrastriatally infused kainate produces neuronal death
associated with increased p53 levels. Pretreatment with a
cell-permeable recombinant peptide targeted to block NF-
kB nuclear translocation, inhibits the kainate-induced up-
regulation of p53 and internucleosomal DNA fragmenta-
tion.35 These findings suggest that under the appropriate
circumstances p53 can promote delayed neuronal cell
death observed in response to excitotoxic injury.

Additional evidence to support a role for p53 in
excitotoxic cell death will require the application of p53
inhibitors89 or antisense oligonucleotides to inhibit p53
activity and suppress p53 expression, respectively. In fact,
antisense oligonucleotides can suppress p53 induction and
completely inhibit kainate and glutamate-induced cell death
in rat cerebellar granule neurons in culture.53 Antisense
oligonucleotide-mediated p53 suppression also prevents
neuronal cell death induced by hypoxia,57 DNA damage70

and exposure to the HIV gp120 envelope protein.90 The
adenovirus E1B55K protein has also been used to inhibit
p53 function and the resultant sympathetic neuron cell
death that ensues from NGF deprivation.58 These results
demonstrate that p53 function can be modulated in neurons
making it possible to directly evaluate the relationship of
p53 to neuronal cell death independently of genetic
variations between and within different mouse strains and
gene knock-out lines.

Factors regulating p53 expression in
response to neuronal injury

An emerging body of evidence underscores the critical
relationship between mitochondrial function, energy bal-

ance, and free radical metabolism on the one hand and
neuronal viability on the other.91 ± 95 Mitochondrial oxidative
metabolism, nitric oxide mediated processes, phospholipid
metabolism and proteolytic pathways represent potential
avenues for the generation of free radicals. The generation
of free radicals leads to damage of cellular components
such as lipids, proteins and DNA. Accumulation of DNA
strand breaks is a well known stimulus for elevating p53
protein levels and for activating p53-mediated signaling
pathways.32,33 Ionizing radiation causes DNA damage and
is associated with elevated p53 protein levels in
neurons.34,56 The ataxia telangiectasia (ATM) gene, whose
mutation is associated with a neurodegenerative syndrome,
is required for p53 activation and neuronal cell death in
response to irradiation.34,96 Developing mice lacking the
ATM gene are resistant to ionizing radiation and show a
significant reduction in p53 accumulation in several brain
regions following irradiation.34 However, the extent of
apoptosis in the cerebellum of irradiated ATM-deficient
mice is more pronounced than that in p53-deficient mice.96

While these studies demonstrate that the ATM gene is
upstream of p53, it also suggests that there may be
additional signaling pathways regulating p53-dependent
processes.

The stress activated kinases, particularly the Jun N-
terminal kinase (JNK) and the p38 MAP kinase are
activated in response to genotoxic damage97,98 and both
have been shown to phosphorylate the p53 protein.99 ± 101

Direct stimulation of the JNK pathway in sympathetic
neurons elevates p53 protein levels and induces neuronal
cell death.58 In contrast, nerve growth factor promotes
neuronal survival by binding to and activating the TrkA
receptor, which, in turn, stimulates several signaling
pathways including the small GTP-binding protein p21
Ras (Ras). Ras activates several downstream effector
proteins, including Raf and phosphatidylinositol 3-kinase
(PI3-K). Raf binds to and activates the MAP kinase kinase
1 (MEK1) and MEK2 signaling cascade, culminating in the
activation of the extracellular signal-regulated kinase
(ERK). Thus, the ERK pathway, which can act in direct
opposition to JNK and p38 MAP kinases,102 has been
shown to protect against p53-mediated cell death in
sympathetic neurons.55 PI3-K activates the serine/threo-
nine kinase Akt (protein kinase B), which stimulates
neuronal survival103,104 in part, through the inactivation of
BAD.105 Phosphorylated BAD is sequestered by the 14-3-3
protein releasing BclxL to antagonize Bax.106 The direct
activation of Ras, which sits upstream of ERK, is sufficient
to suppress a p53-mediated cell death pathway in
sympathetic neurons.107 Ras may inhibit p53-mediated
apoptosis by suppressing p53 and bax protein levels, and
Bax activity, the latter playing a key role in developmental
cell death in sympathetic neurons.108

NF-kB is an essential survival factor in several
physiological conditions, but it is also a main mediator of
the cellular response to a variety of extracellular stress
stimuli resulting in apoptosis. Intrastriatal administration of
the excitatory receptor agonists, quinolinic acid or kainic
acid, induces NF-kB nuclear translocation and increased c-
myc and p53 mRNA and protein expression in striatal
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neurons undergoing apoptosis.35,38 The addition of an NF-
kB targeted cell-permeable recombinant peptide blocks NF-
kB nuclear translocation and the elevation in c-myc and
p53 mRNA and protein expression. These effects were
associated with a significant reduction in neuronal cell
death, suggesting that the transcription factor NF-kB may
promote neuronal apoptosis by regulating the expression of
p53. Interestingly, p53 induction has been reported to
cause an activation of NF-kB that correlates with the ability
of p53 to induce apoptosis.109 Thus, once induced, p53
may ensure its continued expression by activating NF-kB.

Several other unrelated molecules modulate p53
expression. These include the cations lithium and
magnesium. Lithium, which has been used to treat bipolar
depressive disease, protects neurons from cell death
induced by middle cerebral artery occlusion,110 an insult
that increases p53 expression.42,43 More recently, lithium
has been shown to suppress glutamate-induced increases
in p53 and Bax protein levels in cultured cerebellar granule
neurons.54 Administration of magnesium is neuroprotective
in experimental models of traumatic brain injury. Recent
evidence suggests that the neuroprotective effects of
magnesium treatment may be related, in part, to down-
regulation of p53 gene expression.41 The mechanisms
underlying the suppression of p53 expression by lithium
and magnesium have not been identified.

A novel and potentially physiologically relevant p53
regulatory pathway has recently been described for the
human amyloid precursor protein (APP). Wild-type human
APP was shown to prevent cell death in a differentiated
neuronal cell line in response to elevated p53 expression
induced by UV irradiation, staurosporine treatment and
p53-adenovirus infection.111 Mutant forms of APP asso-
ciated with familial-early onset forms of Alzheimer's disease
did not confer protection. While neither form of APP altered
p53 protein levels or p53 nuclear translocation, wild-type
APP, in contrast to mutant APP, suppressed p53-mediated
transcriptional activation from a p53-responsive promoter.
The mechanism by which APP-mediated signaling altered
p53 activation was not identified. However, this result
suggests that naturally occurring mutations in genes
predisposing individuals to neurodegeneration could en-
hance neuronal vulnerability to p53-mediated cell death in
response to secondary insults.

In summary, these results demonstrate that: (1) p53
expression is upregulated in neurons in response to a
diverse array of cellular insults, (e.g., excitotoxicity,
hypoxia, ionizing irradiation, trophic factor depletion, etc.);
(2) p53 expression is regulated by discrete signal
transduction pathways; and (3) knowledge of these
signaling pathways can be used to manipulate p53
expression in order to suppress p53-mediated cell death
in neurons.

Mechanism of p53-mediated cell death in
neurons

p53 promotes apoptosis by modulating the expression of
select target genes. The p53 protein can function as a site-
specific transactivator or a repressor of transcription.18,112 ± 115

Numerous pro-apoptotic genes are susceptible to regulation
by p53 including Bax,116 IGF-binding protein-3,117 Fas,118,119

the p53-inducible genes (PIG's)120 and reaper.121 p53 may
also induce apoptosis through transcriptional repression
although the mechanism for repression is not understood.
Genes downregulated by p53 include bcl-2,19 the IGF-I
receptor,122 the microtubule associated protein MAP4123 and
presenilin-1.20 An important finding has recently suggested
that p53 may promote cell death by altering the expression of
enzymes that regulate the redox state of cells.120 Therefore,
one intriguing possibility is that p53-induced changes in cell
viability may stem, in part, from alterations in free radical
metabolism and declining mitochondrial function.124 Disrup-
tion of the mitochondrial membrane potential and increased
production of reactive oxygen species have been defined as
early events in the process of neuronal apoptosis.93,125 ± 128

The mechanism by which p53 specifies the neuronal
response to injury is poorly understood. However, the few
studies published to date utilizing neurons are in
agreement with the idea that Bcl-2 family member, Bax,
is essential for p53-mediated cell death in neurons. Bax-
deficient neurons are protected from cell death induced by
DNA damaging agents69,96 and adenovirus-mediated p53
over-expression.69,129 One possibility is that p53-induced
changes in neuronal viability stem from declining
mitochondrial function initiated by alterations in the activity
of Bax. This hypothesis is consistent with the demonstra-
tion that mitochondrial dysfunction, detected as the loss of
mitochondrial membrane potential and increased produc-
tion of reactive oxygen species, plays an obligate role in
certain forms of neuronal damage.27 ± 30 A relationship
between Bax and alterations in mitochondrial function is
substantiated by the recent demonstration that cell
damage promotes Bax translocation from the cytosol to
the mitochondria in COS cells130 ± 132 and in neu-
rons.133,134 Bax activation has been associated with a
reduction in mitochondrial membrane potential, mitochon-
drial release of cytochrome c and activation of
caspases.135 ± 139 This suggests that caspases may also
be a component of the p53-induced cell death pathway
sitting downstream of Bax activation.

The relationship between p53 and caspase activation
has recently been examined in neurons. Recent studies
indeed demonstrated that p53 is required for caspase
activation in response to genotoxic stress.69,96,129,140 These
findings suggest that some forms of neuronal injury invoke
a common pathway involving signal transduction through
p53, Bax, mitochondrial dysfunction, cytochrome c release
and caspase activation. However, other forms of injury
have been shown to induce neuronal cell death by
stimulating Bax translocation and caspase activation
independently of p53.141 These results demonstrate that
different cellular stresses can elicit cell death by activating
distinct signaling pathways culminating in Bax and caspase
activation.

Caspase activation can thus be regulated by both p53-
dependent and p53-independent pathways, depending
upon the nature of the injury stimulus. When activated
in response to a p53-dependent pathway the contribution
of caspases to cell death is controversial. Caspase-3
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activation is required for p53-dependent cell death in
cerebellar granule neurons in response to ionizing
radiation96 consistent with results obtained in non-
neuronal cells.139,142 ± 144 However, specific peptide
inhibitors of caspases (zVAD-fmk, zDEVD-fmk and BAF)
did not protect hippocampal and cortical neurons from
p53-dependent cell death induced by radiation,71 gluta-
mate72 or camptothecin-treatment140 when the neuronal
cultures were established from postnatal animals as
opposed to embryos. In addition, adenovirus-mediated
overexpression of p53 promoted neuronal cell death but
did not induce caspase activity in postnatal cortical
neurons.140 Moreover, adenovirus-mediated p53 gene

delivery to caspase-3 deficient postnatal cerebellar
granule neurons demonstrated a delay but not complete
protection from cell death.129 These results are consistent
with reports supporting the existence of caspase-
independent mechanisms of programmed cell death in
other cell types135,145 ± 147 and suggest that the require-
ment for caspase activity depends on the developmental
status of neurons.

Clearly, additional studies are required to elucidate the
downstream effectors mediating neuronal cell death in
response to p53 activation. The glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH) gene has been identified
as a p53-inducible gene in cultured cerebellar granule

Figure 1 Schematic representation of proposed inducers and suppressors of p53 expression and p53-mediated cell death in neurons. Specific cellular insults
such as genotoxic and excitotoxic stresses are shown in relation to the specific signal transduction cascades they activate upstream of p53. An inactivating
mutation in the E6-AP ubiquitin ligase, in a mouse model of Angelman's syndrome, has been associated with increased cytoplasmic abundance of the p53
protein,50 consistent with the demonstration that p53 protein levels are normally regulated through a ubiquitin-dependent, proteasome-mediated pathway.10,11 The
mechanisms by which the various suppressors limit p53 expression or function following injury have not been identified with the exception of the RAS?ERK
pathway. ATM, ataxia telangiectasia gene; JNK, c-Jun-N-terminal kinase; APP, amyloid precursor protein; ERK, extracellular signal regulated kinase; MEK,
mitogen activated protein kinase kinase

Figure 2 Schematic representation of cell death effectors activated in response to p53 induction. Various cytotoxic insults lead to the activation of p53 (as shown
in Figure 1), which, in turn, activates several downstream effectors. Those pathways clearly associated with p53 dependent cell death in neurons are marked by
solid arrows. Those pathways that have been associated with p53-dependent cell death in non-neuronal cells are marked by broken arrows. Clearly, many of the
p53-dependent downstream effectors identified in non-neuronal cells should be evaluated in neurons. Caspases are listed in relation to several distinct pathways
because evidence demonstrates that they are activated in response to: (1) mitochondrial damage and cytochrome c release; (2) the activation of death receptors
such as TNF receptor and Fas (CD95); and (3) direct protein-protein interactions with p53.21 GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PIG's, p53-
inducible genes

Cell Death and Differentiation

p53 in neuronal cell death
RS Morrison and Y Kinoshita

874



neurons subject to DNA damage.70 Antisense oligonucleo-
tide-mediated suppression of GAPDH expression is
neuroprotective,148 suggesting that GAPDH may function
as a p53 cell death effector. However, the precise
mechanism underlying the involvement of GAPDH in
neuronal apoptosis is unclear. Other genes, such as DR5,
Fas, Fas ligand18 and PERP149 have been shown to be
induced by apoptotic stimuli as a result of p53 activation in
a variety of non-neuronal cell types, but the involvement of
these genes in p53-dependent neuronal apoptosis is not
known.

Summary

Emerging evidence obtained from acute injury models and
brain tissue derived from patients with chronic neurodegen-
erative diseases implicate the p53 tumor suppressor protein in
the regulation of neuronal cell death. The presence of p53 in
damaged neurons, which often suffer significant oxidative
stress following injury, is consistent with p53's known role in
responding to a variety of stimuli, including oxidative stress,
chemotherapeutic agents, hypoxia, nucleotide depletion, and
oncogene expression.114,150 Many unanswered questions
remain regarding the role of p53 in neurons. For example,
does p53 normally play a role in maintaining DNA integrity in
neurons by regulating DNA repair processes in the absence of
injury? How p53 induces neuronal cell death remains
unresolved. The full gamut of genes activated or repressed
in neurons in response to p53 induction have not been
identified. In this regard, gene expression studies involving
serial analysis of gene expression (SAGE) and cDNA
microarray analysis will help to identify genes that are
differentially expressed in response to p53 induction,151

further defining the mechanisms underlying p53-dependent
cell death in neurons. Characterizing the involvement of
recently identified p53 family members in neuronal cell death
will also contribute to the current understanding of the p53
pathway. All three proteins (p53, p63 and p73) share similar
transcriptional activities as well as the ability to induce
apoptosis.152,153 However, each appears to play a distinct
role in development and tumor suppression.152,153 Additional
evidence in support of a direct role for p53 in neuronal
apoptosis will eventually be provided by the application of
chemical inhibitors of p53,89 which may be utilized to
transiently suppress p53-mediated cell death pathways in
acutely injured neurons. The continuing development of new
information concerning p53-dependent neuronal cell death is
encouraging, as this knowledge may ultimately be translated
into effective treatments for maintaining neuronal viability and
restoring function following cytopathic insults to the nervous
system.

Note added in proof
After submission of this manuscript, two papers have appeared that are
relevant to this review. Pozniak et al. (Science 289:304-306) have
demonstrated in vivo and in vitro that an amino terminal-truncated form of
p73 functions as a p53 antagonist, preventing p53-mediated develop-
mental death of sympathetic neurons in response to NGF deprivation.

Steffan et al. (Proc. Natl. Acad. Sci. USA 91:9842-9846) have shown that
the Huntington's disease protein, huntingtin, interacts with p53 and CBP
affecting p53-dependent gene transcription, providing another example of
p53's potential contribution to neurodegenerative diseases.
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