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Abstract

Human promyelocytic leukemia HL-60 cells are well known to
differentiate into granulocytes or monocytes in the presence
of some agents such as DMSO or PMA, respectively.
Differentiated HL-60 cells become resistant to some apoptotic
stimuli including anticancer drugs or irradiation though
undifferentiated cells significantly respond to these stimuli.
TRAIL (TNF-related apoptosis-inducing ligand) which is also
known as Apo2 ligand (Apo2L), a new member of TNF family,
can induce apoptosis in some tumor cells but not in many
normal cells. We show here that apoptosis is well induced in
HL-60 cells by TRAIL, but susceptibility to TRAIL is reduced
during granulocytic differentiation by DMSO. We also suggest
some possible mechanisms by which granulocytic differ-
entiated cells become resistant to TRAIL-induced apoptosis.
First, in granulocytic differentiated cells, expression of
antagonistic decoy receptors for TRAIL (TRAIL-R3/TRID/
DcR1/LIT and TRAIL-R4/TRUNDD/DcR2) were enhanced. In
addition, expression of Toso, a cell surface apoptosis
regulator, seemed to block activation of caspase-8 by TRAIL
via enhanced expression of FLIP,_ in granulocytic differen-
tiated cells. These findings suggest that differentiated cells
are resistant using plural mechanisms against various
apoptosis-inducing stimuli rather than undifferentiated cells.
Cell Death and Differentiation (2000) 7, 939 - 946.
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Introduction

Human promyelocytic leukemia HL-60 cells are known to
become resistant to various apoptotic stimuli such as
anticancer drugs, irradiation which involve mitochondrial
pathways, after differentiation is induced by some re-
agents.'~* Recently, it was reported that expression of Mcl-
1 which is one of the members of Bcl family was increased
when HL-60 cells were induced to monocytic differentiation by
1,25-dihydroxyvitamin Dz.> This increase of Mcl-1 inhibited
apoptosis induced by VP-16, calcium ionophore by reducing
release of cytochrome ¢ from mitochondria.

On the other hand, TRAIL/Apo2L, a new cytotoxic ligand
which is the member of TNF family,°~8 and its specific
receptors®~'® have been identified. Expression of TRAIL is
detected in various normal cells. Similarly to other TNF family
molecules, TRAIl can induce apoptosis by ligation to its
specific cell surface receptors (TRAIL-Rs). Interestingly,
although TRAIL can induce apoptosis in tumor cells, little or
no effect on normal cells has been reported.®” We found that
apoptosis was induced in HL-60 cells by TRAIL, but HL-60
cells became resistant to TRAIL-induced apoptosis when
they were induced to granulocytic differentiation. TRAIL
transduces its apoptotic signal via cell surface receptor, like
Fas or TNFa. Recently, it was reported that in receptor-
mediated apoptosis, Bid, a member of Bcl family, was
cleaved by activated caspase-8, and cytochrome c was
released from mitochondria by cleaved Bid.'®=2' The
cleavage of Bid by caspase-8 was also found in TRAIL-
induced apoptosis in BJAB cells.22 However, the inhibition of
receptor-mediated apoptosis cannot be explained by only
inhibition of cytochrome c release from mitochondria.
Therefore, the mechanisms of resistance to TRAIL-induced
apoptosis during granulocytic differentiation may not be
sufficiently explained by inhibition of cytochrome c release
from mitochondria by Bcl family proteins such as Bcl-2, Bcl-
x., Bax, Bfl-1 and Mcl-1. So it is expected that there are other
changes in the TRAIL-induced apoptotic pathway from the
ligation of TRAIL with receptor to the final process of
apoptosis during granulocytic differentiation.

When TRAIL binds to its specific receptors, TRAIL-R1
(DR4) or -R2 (DR5, TRICK2, KILLER), which have
intracellular death domain, caspase-8 is cleaved and
activated followed by caspase-3 activation.®'® Another two
receptors, TRAIL-R3 (TRID, DcR1, LIT) which has no
cytoplasmic death domain, and TRAIL-R4 (TRUNDD, DcR2)
which has incomplete death domain act as inhibitor of TRAIL-
induced apoptosis by competition with TRAIL-R1,
-R2.10:11.17.18 Besides the changes of expression of TRAIL
receptors, another possible mechanism that contributes to
resistance to TRAIL is expression of intracellular proteins that
inhibit activation of caspases. It has been reported that FLIP,
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and |IAP family proteins (XIAP, c-IAP1 and c-IAP2) directly
inhibit activation of caspase-8 and caspase-3, -7, respec-
tively.23=3" Recently, it was shown that in T cells, inhibition of
caspase-8 activation by FLIP, was related with resistance to
Fas-induced apoptosis caused by TCR activation.?” More-
over, a cell surface apoptosis regulator, named Toso, which
regulated induction of FLIP_expression was identified.®? Toso
can inhibit apoptosis induced by Fas, TNFo or FADD, but not
by staurosporine or ceramide. It has been demonstrated that
the consistently weak expression of mRNA for Toso is
detected in some cell lines including HL-60 cells.

We therefore investigated changes of expression of these
anti-apoptotic proteins in addition to four distinct receptors for
TRAIL during granulocytic differentiation of HL-60 cells. In
this study, we show that HL-60 cells become resistant to
TRAIL-induced apoptosis during granulocytic differentiation.
And the results suggest that the upregulation of TRAIL-RS, -
R4, and enhanced expression of FLIP_ induced by Toso
participate in resistance to TRAIL-induced apoptosis in
granulocytic differentiation of HL-60 cells.

Results

Apoptosis is induced by TRAIL in HL-60 cells but
not granulocytic differentiated cells

Granulocytic differentiation of HL-60 cells was confirmed by
expression of cell surface CD11b as shown in Figure 1A. We
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studied the susceptibility of HL-60 cells to human recombinant
TRAIL. Undifferentiated HL-60 cells underwent apoptotic cell
death by incubation with 1 ng/ml of TRAIL for 4 h. Figure 1B
shows TRAIL-induced DNA fragmentation confirmed by
agarose gel electrophoresis. In undifferentiated cells, DNA
fragmentation was observed after incubation with TRAIL,
whereas in granulocytic differentiated cells, decreased DNA
fragmentation was observed. To quantify apoptotic cell death
induced by TRAIL, flowcytometric analysis was performed
using propidium iodide. Figure 1C shows reduction of
fragmented DNA in subdiploid area during granulocytic
differentiation. These findings suggest that granulocytic
differentiated HL-60 cells become increasingly resistant to
the induction of apoptosis by TRAIL.

TRAIL induces apoptosis in undifferentiated HL-60
cells via activation of caspase-8 and -3, but not in
granulocytic differentiated cells

Next, we investigated whether caspase-8 and caspase-3
were activated by TRAIL. To confirm the activation of both
caspase-8 and -3, cleavages of them were determined by
Western blot analysis. Activation of caspase-8 yields 12 kDa
and 20 kDa active subunits from the 43 kDa inactive form,
while 17 -20 kDa active subunits are cleaved from a 32 kDa
inactive form during caspase-3 activation. Figure 2 shows
reduced expression of inactive form of caspase-8 in
granulocytic differentiated cells. In addition, cleaved products
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from both caspase-8 and -3 were detected in undifferentiated
cells, whereas they were little detected in granulocytic
differentiated cells after incubation with 1 ug/ml of TRAIL,
suggesting that resistance of granulocytic differentiated cells
to TRAIL-induced apoptosis is related with inhibition of
activation of caspase-8. Additional experiment using cas-
pase inhibitors was performed. As shown in Figure 3, when
preincubated with Ac-IETD-CHO which is known as a
caspase-8 inhibitor, TRAIL-induced apoptosis was de-
creased in undifferentiated HL-60 cells. Similar result was
obtained by using caspase-3 inhibitor, Ac-DEVD-CHO, but
ability to inhibit TRAIL-induced apoptosis was weaker than
that of caspase-8 inhibitor. Whereas, Z-VAD-FMK, which is a
pan-caspase inhibitor, almost completely blocked TRAIL-
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induced apoptosis. These findings confirmed the sequential
activation of caspases during TRAIL-induced apoptosis in
undifferentiated HL-60 cells.

Changes of expression of TRAIL receptors during
granulocytic differentiation

It is known that there are four distinct receptors for TRAIL.
TRAIL-R1 (DR4) and -R2 (DR-5, TRICK2, KILLER) are
apoptosis-inducible receptors that contain a death domain.
Other two receptors, TRAIL-R3 (TRID, DcR1, LIT) and -R4
(TRUNDD, DcR2) have no ability to induce apoptosis
because of the lack of death domain or the incomplete death
domain. It has been reported that TRAIL-R1 and -R2 are
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Figure 1 (A) Granulocytic differentiation of HL-60 cells was confirmed by cell surface CD11b expression. After incubation of 1 x 10° cells with or without 1.25%
DMSO, anti-CD11b antibody (—) or control IgG (—) was added to each culture, and then flowcytometric analysis was performed using FITC-conjugated secondary
antibody. (B) Ladder formation of DNA in HL-60 cells treated with TRAIL. After treatment with or without 1.25% DMSO, total of 2 x 10° cells were incubated with or
without TRAIL (1 ug/ml) for 4h. Then DNA was extracted, electrophoresed on 2% agarose gel and visualized by ethidium bromide staining. (C) Flowcytometric
analysis of apoptosis induced by TRAIL. After incubation with or without TRAIL (1 or 2 ug/ml) for 4 h, 5 x 10° cells were stained with PI. Percentages of apoptotic
cells were determined using a FACSCalibur flow cytometer
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widely expressed on both normal and tumor cells, whereas
TRAIL-R3 and -R4 are found on normal, but not on tumor
cells. Considering that TRAIL selectively induces apoptosis in
tumor cells but not in normal cells, sensitivity to TRAIL seems
to be negatively regulated by TRAIL-R3 and -R4. So we
investigated whether changes of expression of TRAIL
receptors could be observed during granulocytic differentia-
tion by RT—PCR using specific primers as described.®® As
shown in Figure 4, mRNA for TRAIL-R1 and -R2 were
detected in both undifferentiated and granulocytic differen-
tiated HL-60 cells. But mRNA for TRAIL-R3 was only
expressed in differentiated cells, and that for TRAIL-R4 was
more strongly expressed in differentiated cells than in
undifferentiated cells. These findings suggest one possibility
that enhanced expression of decoy receptors for TRAIL
contributes to the reduced sensitivity to TRAIL in differentiated
cells.

Enhanced expression of FLIP_ and induction of
Toso during granulocytic differentiation

FLIP. inhibits activation of caspase-8 in receptor-mediated
apoptosis by FasL or TNFa. The relation between expression
of FLIP_ and resistance to TRAIL-induced apoptosis is
unclear, but there are some studies supporting inhibitory
effect of FLIP_ on TRAIL-induced apoptosis.>® We therefore
performed Western blot analysis to detect FLIP, expression in
HL-60 cells. Expression of FLIP, was observed in undiffer-
entiated HL-60 cells, and was enhanced in granulocytic
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Figure 2 Activation of caspase-8 and -3 by TRAIL. After treatment with or
without 1.25% DMSO, each HL-60 cell was incubated with or without TRAIL
(1 ug/ml) for 4h. Then cleavages of caspase-8 and -3 were determined by
Western blot using specific antibodies to each caspase. Activation of caspase-
8 was confirmed by detection of active form of 20kDa cleavage, and that of
caspase-3 was confirmed by detection of active form of 20—17 kDa products
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differentiated cells (Figure 5B). There was no significant
difference in expression of FADD during differentiation of HL-
60 cells. Recently, immunoglobulin domain-containing poly-
peptide, Toso, was cloned and characterized.® This molecule
inhibits apoptosis induced by Fas, TNFo or FADD. Toso is
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Figure 3 Effect of caspase inhibitors on TRAIL-induced apoptosis. Each cell
was preincubated separately with or without inhibitor of caspase-8 (Ac-IETD-
CHO: 100 uM), caspase-3 (Ac-DEVD-CHO: 200 uM) or pan-caspases (Z-VAD-
FMK: 100 M) for 2h before exposure to TRAIL. After incubation with TRAIL
(1 ug/ml) (closed) or vehicle (open) for 4 h, percentages of apoptotic cells were
determined by flowcytometric analysis as described in Figure 1. The means
and standard deviations of three independent experiments are shown
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Figure 4 Messenger RNA expression of TRAIL receptors. RT-PCR was
performed using specific primers to each receptor. Total RNA (5 ng) from each
HL-60 cell cultured with or without 1.25% DMSO were reverse transcribed and
PCR amplified. The length of each PCR product matched that predicted from
the sequence data
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Figure 5 (A) RT-PCR analysis for mRNA expression of Toso in each HL-60
cell. Before and after differentiation, total RNA from each HL-60 cell were
reverse transcribed and PCR amplified with specific primers to Toso and
GAPDH. (B) Western blot analysis for FLIP, and FADD in each HL-60 cell.
After treatment with or without 1.25% DMSO, cell lysates were extracted and
immunoblotted with specific antibodies

expressed on T cell during its activation. The inhibitory effect
of Toso on apoptosis is attributable to the induction of FLIP, .
So RT—-PCR was performed to determine whether mRNA for
Toso was expressed or not in both undifferentiated and
differentiated HL-60 cells. As shown in Figure 5A, mRNA
expression of Toso was observed only in granulocytic
differentiation HL-60 cells, suggesting that expression of
FLIP. is induced by Toso and it regulates TRAIL-induced
apoptosis.

Discussion

Granulocytic differentiation of HL-60 cells results in
spontaneous apoptosis.3* On the other hand, differen-
tiated cells are resistant against multiple apoptotic stimuli,
such as anti-cancer drugs,’ irradiation or hyperthermia.?3®
However, it has been demonstrated that expression of
Bcl-2 which blocks some kind of apoptosis by inhibiting
release of cytochrome ¢ from mitochondria is decreased,
and that Bax which reduces anti-apoptotic effect of Bcl-2
by dimerizing Bcl-2, is also decreased in HL-60 cells
during granulocytic differentiation.®® Moreover, induction of
granulocytic differentiation by retinoic acid reduces
expression of Bcl-x in HL-60 cells.®” Another experiment
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demonstrated the relation of differences in the suscept-
ibility to drug-induced apoptosis with the change of cell
cycle during differentiation in HL-60 cells.®® However, the
details of alteration of susceptibility to apoptotic stimuli
during differentiation are still unclear. Recently, Mcl-1
protein was found to inhibit apoptosis induced by some
anticancer agents and calcium ionophore by inhibiting
cytochrome c release from mitochondrial in monocytic
differentiating HL-60 cells.® This protein has homology with
Bcl-2 protein and is mainly expressed in differentiating
cells. On the other hand, A1, hematopoietic-specific early-
response gene product which has homology with bcl-2,
has been characterized.>® This anti-apoptotic protein A1 is
constitutively expressed in neutrophils.*® Moreover, in the
myeloid precursor cell line, 32DclI3, A1 gene expression is
stably induced during G-CSF-stimulated granulocytic
differentiation. Expression of these anti-apoptotic proteins
during granulocytic differentiation effectively inhibits re-
lease of cytochrome c¢ from mitochondria and regulates
apoptosis.*! However, in our observation, expression of
mRNA of A1 was detected similarly in both undiffer-
entiated and granulocytic differentiated HL-60 cells (data
not shown).

On the contrary, in receptor-mediated apoptotic signal
pathway, when ligand, such as FasL or TNFa, binds to
each specific receptor and multimerization of these
receptors is formed, apical caspases, such as caspase-8
and -10 are activated via FADD, subsequently caspase-3
is activated. Human monocytic leukemia U937 cells, which
are sensitive to TNFa and FasL, become resistant not only
to anticancer agents but also to these ligand-induced
apoptosis when they are differentiated to macro-
phages.*?* |t has been suggested that the receptor-
mediated apoptotic pathway is blocked upstream of the
cytochrome ¢ release from mitochondria in differentiated
U937 cells. Bid, which is a member of the Bcl-2 family,
found to be cleaved by activated caspase-8, and promote
release of cytochrome c¢ from mitochondria in receptor-
mediated apoptosis.’® On the other hand, it has been
demonstrated that the Fas-mediated apoptotic pathway is
independent on p38 mitogen-activated protein kinase
(MAPK), whereas stress-induced apoptosis was p38
MAPK-dependent in neutrophils.** Furthermore, it has
been shown that granulocytic differentiation of HL-60
cells results in a loss in c-Jun NH2-terminal kinase
activation with concomitant acquisition of stress-induced
p38 MAPK activity.

Recently, TRAIL (TNF-related apoptosis inducing Ili-
gand), a member of the TNF family, is identified. TRAIL
also induces apoptosis via its specific receptor.” Constitu-
tive expression of TRAIL is detected in a wide range of
normal human tissues and TRAIL induces apoptosis on
tumor cells but not on normal cells.®” In the present study,
we investigated whether TRAIL could induce apoptosis on
undifferentiated and granulocytic differentiated HL-60 cells.
As demonstrated, TRAIL can induce apoptosis on
undifferentiated cells within 4 h, but not on granulocytic
differentiated cells. This phenomenon seems to be
compatible with limited cytotoxicity of TRAIL to tumor
cells. When TRAIL binds to its specific receptors, TRAIL-
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R1, -2,%'24% which have complete cytoplasmic death
domain, apoptotic signal is transmitted and subsequently
caspase-8 is activated.'’® An experiment using caspase-
inhibitors supports importance of caspase-8 activation in
TRAIL-induced apoptosis. Western blot analysis showed
activation of caspase-8 and -3 in undifferentiated, but not in
granulocytic differentiated HL-60 cells, suggesting that
inhibiting factors of apoptotic signal by TRAIL exist
upstream of caspase-8. Reduced expression of the
inactive form of caspase-8 in granulocytic differentiated
cells was observed. However, it seems not to be the main
mechanism of resistance to TRAIL-induced apoptosis,
because not enough amount of caspase-8 was detected
by Western blot even after granulocytic differentiation. So
we examined expression of mRNA for TRAIL receptors, R1,
R2, R3 and R4. TRAIL-R1 and -R2, which are apoptosis-
inducible receptors, are expressed in a wide range of cells,
but TRAIL-R3 and -R4, which are called decoy receptors,
are expressed in restricted normal cells."®'""® These
decoy receptors cannot mediate the apoptotic signal
because R3 has no cytoplasmic domain'® and R4 has
incomplete death domain and induces activation of NF-
xB." Therefore, expression of TRAIL-R3 and -R4 is
considered to be related with resistance to TRAIL in
normal cells.'®'""'"® RT—PCR using specific primers to
these receptors®® revealed constitutive mRNA expression
of TRAIL-R1 and -R2 in both undifferentiated and
granulocytic differentiated cells. On the other hand,
upregulation of TRAIL-R3 and -R4 was observed during
granulocytic differentiation, suggesting the possible me-
chanism of resistance to TRAIL-induced apoptosis in
granulocytic differentiated HL-60 cells.

Recently, in T cells, cell surface polypeptide named
Toso was found to regulate FLIP,_ expression.® Toso is
expressed on activated T cells and inhibits receptor-
mediated apoptosis through expression of FLIP. Yasumichi
H et al, screened expression of Toso in several human
tissues and cell lines and it was expressed in the spleen,
lymph nodes, thymus and peripheral blood leukocytes.
Among cell lines, Toso was observed mainly in lymphoid
cell lines. In HL-60 cells, weak expression of Toso was
reported. So we investigated whether mRNA expression of
Toso was observed in HL-60 cells by RT—PCR. The result
demonstrated that expression of Toso in mRNA level was
observed in granulocytic differentiated, but not in undiffer-
entiated HL-60 cells, suggesting that expression of FLIP
may be enhanced by Toso during not only T cell activation
but also granulocytic differentiation. FLIP interferes with
receptor-mediated apoptotic signaling pathways by inhibit-
ing caspase-8 activation. There are some reports which
demonstrate inhibiting role of FLIP in TRAIL-induced
apoptosis. Griffith et al.®® showed correlation of FLIP
expression and resistance to TRAIL-induced apoptosis in
human melanoma cells. In their report FLIP levels were
highest in the TRAIL-resistant cells and were low or absent
in the sensitive cells. On the other hand, there is a report in
which the presence and levels of FLIP expression did not
correlate with resistance to TRAIL-induced apoptosis in
melanoma cells.*® This study indicates the possibility of
existence of other intracellular proteins that regulate TRAIL-
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induced apoptosis in melanoma cells. Though there are
opposite possibility whether FLIP inhibits TRAIL-induced
apoptosis or not, FLIP seems to be able to block it partially
because caspase-8 activation is involved in TRAIL-induced
apoptotic pathway. In our study, expression of FLIP_ was
slightly increased in granulocytic differentiation of HL-60
cells, suggesting possible participation of FLIP induced by
Toso in resistance to TRAIL-induced apoptosis. These
changes of susceptibility to TRAIL-induced apoptosis seem
to relate with a role of mature leukocyte in the immune
system.

Materials and Methods
Reagents

Recombinant human TRAIL was purchased from Biomol Research
Laboratories, Inc. (Plymouth Meeting, PA, USA). Antibody to human
CD11b was purchased from Chemicon International Inc. (Temecula,
CA, USA). Antibodies to caspase-8 and FLIP, were purchased from
Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA). Antibody to
caspase-3 was purchased from PharMingen (San Diego, CA, USA).
Antibody to FADD was purchased from StressGen Biotechnologies
Corp. (Victoria, BC, Canada). Caspase inhibitors, Z-VAD-FMK, Ac-
IETD-CHO and Ac-DEVD-CHO from Peptide Institute, Inc. (Osaka,
Japan), were dissolved in dimethyl sulfoxide (DMSO) as stock
solution.

Cell culture and induction of differentiation

The human promyelocytic leukemia cell line HL-60 was maintained in
RPMI 1640 (Gibco, BRL, Grand Island, NY, USA) supplemented with
10% heat-inactivated fetal calf serum (EQUITECH-BIO, INC. Ingram,
TX, USA), 2 mM L-glutamine and 1 x 10~° M f-mercaptoethanol in a
5% CO, atmosphere at 37°C. Cells were induced to granulocytic
differentiation by treatment with 1.25% (v/v) DMSO for 3 days.

Detection of DNA fragmentation by agarose gel
electrophoresis

After incubation with or without 1 pg/ml of rTRAIL for 4 h, 2 x 10 cells
were washed in PBS(—), lysed in 30 ul of 10 mM Tris-HCI, 100 mM
EDTA-Na (pH 8.0), containing 0.5% (w/v) sodium-N-lauroylsarcosi-
nate (SDS) and 0.5 mg/ml RNase A (Sigma, St. Louis, MO, USA) and
incubated at 50°C for 30 min and then treated with 0.5 mg/ml of
proteinase K (Sigma, St. Louis, MO, USA), and incubated at 50°C for
30 min. Electrophoresis was performed on 2% agarose gel in TAE
buffer. After electrophoresis, DNA was visualized by ethidium bromide
staining.

Flowcytometric analysis for induction of
differentiation and apoptosis

Cell surface CD11b expression was used as a marker of granulocytic
differentiation. 1 x 10 cells treated with or without 1.25% DMSO were
incubated with anti-CD11b antibody or control 1gG for 30 min at 4°C.
After washing in PBS(—), they were incubated with FITC-conjugated
second antibody. For measurement of apoptosis, 5x 10° cells were
treated with or without 1 pg/ml of rTRAIL for 4 h, and resuspended in a
hypotonic buffer containing 0.1% sodium citrate, 0.1% Triton X-100
and 50 ug/ml propidium iodide (Sigma, St. Louis, MO, USA) at 4°C in
the dark overnight. Flow cytometric analyses were all performed by a
FACSCalibur (Becton Dickinson, Mountain View, CA, USA) using
CellQuest analysis software.



Treatment with caspase inhibitors

5x10° cells were preincubated for 2 h in the presence of caspase
inhibitors, Z-VAD-FMK (100 uM), Ac-IETD-CHO (100 M) and Ac-
DEVD-CHO (200 M) or same volume of DMSO and then rTRAIL or
vehicle was added. The percentage of apoptotic cells was determined
by flow cytometry described as above.

SDS -PAGE and Western blot analysis

5x10° cells were resolved in 100 ul RIPA lysis buffer (PBS(—)
containing 1% Nonidet P-40, 0.5% sodium deoxycholate and 0.1%
SDS) containing 100 ug/ml PMSF, and lysates were centrifuged at
10 000 g for 1 min. The supernatant was added to equal volume of
sample buffer (200 mM Tris-HCI (pH 6.7) containing 5% SDS, 20%
glycerol, 0.2 mg/ml BPB and 10% f-mercaptoethanol) and then boiled
for 3 min. Equal amount of the cell lysates were separated by SDS -
PAGE using 10 or 15% polyacrylamide gels and subsequently
transferred to a PVDF membrane (ATTO Co., Tokyo, Japan).
Blocking was performed in PBS(—) containing 0.1% Tween-20, 1%
BSA at 4°C overnight. After several washings in PBS(—) containing
0.1% Tween-20, membranes were incubated with specific antibodies
for 1 h at room temperature. After washing, membranes were
incubated with HRP-conjugated second antibody for 1 h at room
temperature. After extreme washing, specific bands were detected
using ECL according to the manufacturer’s protocols.

RT-PCR

Total RNA was isolated from undifferentiated and granulocytic
differentiated HL-60 cells using guanidium isothiocyanate method.
Five ug of total RNA was reverse transcribed with MuLV reverse
transcriptase. Reverse transcription was performed using a thermal
program of 42°C for 60 min, 90°C for 5 min. PCR reactions were
performed using the following primers: GAPDH, 5'-CCA CCC ATG
GCA AAT TCC ATG GCA-3' and 5'-TCT AGA CGG CAG GTC AGG
TCC ACC-3’; TRAIL-R1, 5'-CTG AGC AAC GCA GAC TCG CTG TCC
AC-3' and 5-TCC AAG GAC ACG GCA GAG CCT GTG CCAT-3;
TRAIL-R2, 5-GCC TCA TGG ACA ATG AGA TAA AGG TGG CT-3
and 5’-CCA AAT CTC AAA GTA CGC ACA AAC GG-3'; TRAIL-R3, 5'-
GAA GAA TTT GGT GCC AAT GCC ACT G-3' and 5'-CTC TTG GAC
TTG GCT GGG AGA TGT G-3’; TRAIL-R4, 5-CTT TTC CGG CGG
CGT TCA TGT CCT TC-3 and 5-GTT TCT TCC AGG CTG CTT CCC
TTT GTA G-3'; Toso, 5'-GCC GAG TTA CTC TGA AGC AAT-3'and 5'-
CTA CTG AAG ATG CTC TGG ACA-3'. 1 cycle at 95°C for 5 min, 72°C
for 2 min; 30 cycles of 94°C for 1 min, 55°C for 1 min, 72°C for 2 min;
and 3 min at 72°C. PCR-amplified products were resolved on 2%
agarose gel and visualized with ethidium bromide.
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