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Abstract
Brca1 mRNA was detectable in female mouse mammary gland
tissue from adult virgins, during pregnancy and early
lactation. It was associated with phases of mammary epithelial
cell proliferation and differentiation but the pattern of Brca1
expression was dissociable from that of a true differentiation
marker, b-casein, by virtue of its significant expression in the
virgin gland and termination of its expression in early
lactation. In a primary cell culture model, association of a
laminin-rich extracellular matrix (ECM) with mammary
epithelial cells was required for cell survival and cell
differentiation and suppressed Brca1 expression in these
cells.ECM-associationmaysignificantlycontribute to thefinal
restriction in Brca1 expression in the lactating gland in vivo.
Interestingly, our results suggest that mammary epithelial
cells undergo apoptosis both when expressing and when not
expressing Brca1, depending on whether the dying cell
populations had been terminally differentiated or not. Cell
Death and Differentiation (2000) 7, 360 ± 367.
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Introduction

Mutations at the human breast cancer susceptibility gene
(BRCA1) locus account for *45% of early-onset familial
breast cancer and 80 ± 90% of inherited co-occurring breast
and ovarian malignancies.1 The murine homologue, Brca1,
encodes a 1812 amino acid protein which displays 58%
homology and similar charge and hydrophilic character to its
human counterpart.2,3 BRCA1 has been variously localised to

the nucleus of normal breast epithelial cells,4 ± 8 to cylinders
derived from cytoplasmic structures which anastamose
through the nucleus9 and to the secretory apparatus10 and
associated secretions.11,12 In addition, it has been reported to
both remain in the nucleus7 and to be present in the cytoplasm
of breast cancer cell4 ± 6 (reviewed in13,14). Some or all of
these observations may be reconciled by the hypothesis that
BRCA1 transcripts are differentially spliced,15 ± 17 and that the
different mature proteins are directed to specific subcellular
sites. For instance, nuclear localisation signals have been
identified as encoded in exon 11 of human BRCA115,18 but
these are obviously absent in the common exon 11-minus
splice variant (reviewed in13). The occurrence in BRCA1 (and
BRCA2) of a DNA-binding RING finger domain19 in the N-
terminal region2,3,20 and of a transactivation domain at the C-
terminus21 ± 23 indicates that these proteins act as transcrip-
tion factors.24 This hypothesis is supported by observations
which implicate BRCA1 in chromatin remodelling,25 and
reports that the protein has been associated with the histone
deacetylase complex.26 BRCA1 also appears to have a direct
involvement with the process of gene transcription: it has
been identified as the hSRB7 component of the holoenzyme
RNA polymerase II,27 and the BRCA1 C-terminal (BRCT)
domain has been reported to associate with RNA helicase
A.28 Another function attributed to BRCA1 homologues is in
the maintenance of genomic integrity, possibly through an
involvement in transcription-coupled DNA repair.29,30 A
functional relationship has been demonstrated between
BRCA1 and cellular agents which mediate the resolution of
double-stranded DNA breaks during recombination31 ± 34

(see35), and BRCA1 has been localised to the centrosome
during mitosis.36 It has also been suggested that the mouse
homologue, Brca1, may interact with the DNA-repair protein
p53 which shows a similar pattern of expression.37 ± 39

Brca1 carries out one or more indispensable functions in
early embryogenesis and appears to be required for
embryonic proliferation and the development of germ
layers and neural structures.38,40 ± 42 That a deficit in cell
proliferation underlies the failure of the Brca1 (and Brca2)
null embryos to survive is further suggested by their
overexpression of the p21/Waf1 cyclin dependent kinase
inhibitor.41,43 The expression of Brca1 at multiple sites of
organogenesis in later embryogenesis, and in a diversity of
adult tissues including the thymus, testis, breast epithelium
and ovarian follicles,37,44 suggests an involvement for the
product(s) of this gene in one or more fundamental
processes of development, and that it is expressed at
sites of proliferation where differentiation will soon follow.
Furthermore, experimental inhibition of BRCA1 expression
produced accelerated growth of normal and malignant
mammary epithelial cells but not of non-mammary
epithelial cells45 and over-expression of BRCA1 produced
growth retardation in vitro, specifically of breast and ovarian
tumour cell lines.46
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The reported expression of Brca1 in postnatal mammary
epithelium during puberty and pregnancy37,44 suggests that
the gene product functions in proliferating and/or differ-
entiated cells. Mammary transcription of the Brca1 gene
has thus far been reported to be high in mid- and late-
pregnancy, appearing to wane upon lactation and early
involution, but becoming prominent again 5 ± 7 days post-
weaning.37,44 Brca1 expression is upregulated in cultured
cells from G1/S to M47 again implying a role in proliferation.
The expression of the human homologue, BRCA1, and
BRCA2 would seem to be similarly cell cycle regulated with
mRNA levels being increased at late G1/early S-phase,
preceding DNA synthesis, in cultured cells.15,48,49 The
kinetics of upregulation of Brca1 expression during
mammary epithelial activity in puberty and pregnancy are
echoed by Brca2.39,47

We have investigated the levels of Brca1 mRNA in two
model systems of mammary epithelial cell proliferation,
differentiation and apoptosis. We show that Brca1 mRNA is
expressed in the virgin, pregnant and for the first time in the
early lactating gland which coincides with the time of a final
burst of alveolar epithelial cell proliferation. Notably, Brca1
was not expressed in early involution when a wave of
epithelial cell apoptosis occurs. In the virgin gland and at
late lactation, Brca1 expression diverged sharply from that
of the differentiation marker milk protein b-casein transcript,
which is detected during pregnancy, lactation and early
involution. In primary cultures of epithelial cells from mid-
pregnant mammary gland tissue we found Brca1 mRNA in
populations of proliferating cells and of quiescent cells
which were predisposed to apoptosis. However, overlaying
the quiescent population with a laminin-rich extracellular
matrix which ensured cell survival and permitted cell
differentiation was sufficient to suppress Brca1 expres-
sion. We hypothesise that Brca1 expression is primarily
associated with proliferation, and is restricted in fully
differentiated mammary epithelial cells by an ECM-integrin
receptor-mediated regulatory mechanism.

Results

Whole mount analysis50 of adult mouse mammary gland
(Figure 1A) reveals the growth of the ductal and alveolar
systems from the virginal state, through pregnancy to full
development in lactation: by mid-pregnancy abundant ductal
branching and strong initial alveolar development has
become evident. In lactation full alveolar development has
been achieved and maximum colonisation of the entire fat pad
is apparent. These events reflect waves of epithelial cell
proliferation during pregnancy and as late as early in
lactation.51 Weaning triggers the onset of involution that
involves, sequentially, milk stasis in the alveoli, a phase of
intense alveolar epithelial cell apoptosis and finally a phase of
reductive glandular remodelling that is associated with
significant local matrix metalloprotease activity.52,53 The
whole mount of the 4-day involuting gland shows significant
alveolar regression and this continues with time (Figure 1A
and results not shown).

The proliferation of the alveolar mammary epithelial cells
during pregnancy is accompanied by gradual asynchronous

differentiation of the cells as pregnancy progresses.54 The
differentiation of the alveolar element of the mammary
gland can be followed by following the appearance of
transcripts of milk protein genes as the gland develops.52

Figure 1B charts the analysis of b-casein transcripts in total
mRNA isolated from virgin, pregnant, lactating, and
involuting mammary gland by RT ± PCR using a limited
cycle-number PCR. Under these conditions no b-casein
transcripts were detectable in the virgin gland, but transcript
was detectable from 8 days of pregnancy onwards through
lactation and early involution eventually becoming unde-
tectable after 8 days of involution (see also52). It has been
of interest to attempt to associate Brca1 expression with
either the proliferating and/or proliferating and differentiated
states of the mammary epithelial cell.37,39,47 RT ± PCR
analysis of Brca1 transcripts (Figure 1B) show their
presence to be dissociated from that of b-casein
transcripts. Brca1 transcripts are detectable in adult virgin
glands where we did not detect b-casein; generally, Brca1
and b-casein expression parallel each other during
pregnancy. However, we here and others37 report
relatively low levels of Brca1 expression at day 14 of
pregnancy. At this time b-casein expression would seem
maintained. The event that dictates this reduction in Brca1
transcript levels remains unclear. In this report, for the first
time, the presence of Brca1 transcripts has been
investigated in early lactation, and are found to be
present. Knight and Peaker51 have shown that a final
surge in epithelial cell proliferation occurs early in lactation.
It is not known what drives this phase of epithelial cell
proliferation but Brca1 expression may very well accom-
pany it. Thereafter, Brca1 and b-casein expression diverge.
Brca1 transcripts were not again detectable until 4 and 8
days after weaning when they were detectable at trace
levels. b-casein expresion on the other hand is maintained
throughout lactation and is eventually lost at day 8 of
involution. Notably, Brca1 was not expressed in early
involution (day 2) when a wave of epithelial cell apoptosis
occurs.51

Figure 1C demonstrates the specificity of the Brca1 PCR
measurement; the first panel shows the digestion of the
RT ± PCR product at a predicted unique internal Ear1 site
(see cartoon); the second panel shows the result of a
Southern blot of the Ear1 digestion products and target
DNA using an internal probe which detects the target DNA
band and the 303 bp product, as predicted. The third panel
shows the result of a hemi-nested PCR with: the primary
PCR product (535 bp) as template; the `Southern probe'
oligonucleotide as forward primer and using the primary
PCR reverse primer. This generates a single band of
366 bp, as predicted (lanes 4 and 5). We therefore judge
our Brca1 RT ± PCR products from the tissue samples and
the primary cell cultures to validly reflect cellular Brca1
transcripts.

A series of studies have used cell culture systems to
model the proliferative, differentiative/surviving and apopto-
tic fates of the alveolar mammary epithelial cell.55 ± 57 These
studies emphasise the capacity of laminin-rich extracellular
matrix to support both the survival and differentiation of
these mammary epithelial cells (in the presence of
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Figure 1 (A) Development and regression of ductal and alveolar elements in the adult mammary gland. Carmine stained whole mounts of (left to right): virgin (5
weeks), pregnant (14 days), lactating and involuting (4 days) mammary gland. (B) RT ± PCR analysis of Brca 1, b-casein and gpdh mRNA levels in virgin (5 weeks),
pregnant (9, 14, 15, 17 and 19 days), lactating (2, 4 and 8 days) and involuting (2, 4 and 8 days) mammary gland. Water blanks (Q) are shown with each analytical
set; the analysis of gpdh amplification in the absence of RT addition to the RNA samples is also shown; 2 mg of total mammary gland RNA was used in each
analysis. The data presented are representative of three independent experiments. (C) Verification of Brca1 PCR analysis. (Top) Cartoon mapping primer and
nesting primer/probe positions; the Brca1 exon structure; the site of the Ear1 restriction site; and the relative sizes of the amplified (primers 1/3), semi-nested
(primers 2/3) and Ear1 restricted fragments are shown. (Bottom, left) Typical PCR product (primers 1/3) unrestricted (lane 1) and restricted with Ear1; (middle)
Southern blot of partial Ear1 restriction of typical PCR product probed with primer 2; (left) Typical PCR product (primers 1/3 lanes 1, 2) and after semi-nesting with
primers 2/3 yield expected product sizes of 535 and 366 bp, respectively (lanes 1, 3: pregnant mammary gland; lanes 2, 4 proliferating primary cultured mid-
pregnant mammary epithelial cells; and lanes 3, 6: water blanks)
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lactogenic hormones). Figure 2A shows how overlay of
primary cultures of mid-pregnant mammary epithelial cells
with laminin rich-ECM (Matrigel) suppresses the apoptotic
loss of the cells when cultured on plastic, as judged by the
suppression of the apoptosis-associated sub-G0/G1 peak
(compare panel (c) to panels (b1) and (b2)). This analysis is
corroborated by the measurement of genomic DNA
fragmentation by the TUNEL end-labelling technique using
flow cytometric analysis of fluorescence (Figure 2B): ECM
overlay suppressed the extent of DNA end-labelling
detectable in cells not overlaid with ECM. As there was a
significant and obvious loss of cells into the medium from the

populations cultured in the absence of ECM-overlay, FACS
and TUNEL/FACS analysis was carried out both on the
`floating cells' in the medium and those remaining adherent,
in this study. The population of proliferating cells showed the
expected FACS cell cycle pattern of DNA-associated PI
fluorescence (Figure 2A) and a low level of genomic DNA
fragmentation. Survival of the cells could be ensured by
substituting laminin overlay for EHS-Matrigel matrix but not
by culturing the cells on a collagen matrix.58 As well as
providing a survival stimulus, it is well known that
association of ECM with such mammary epithelial cells is
permissive for differentiation responses (e.g. the expression

Figure 2 Brca1 expression in proliferating, apoptoic and differentiated/surviving (ECM-overlaid) mouse mammary epithelial cells in primary culture. (A) FACS/cell
cycle analysis of proliferating (a), apoptotic (`pellet' (adherent cells; (b1)) and `supernatant') non-adherent population; (b2)) and ECM-overlaid (c) primary mammary
epithelial cells. Propidium iodide-induced fluorescence (X-axis) is plotted against cell counts Y-axis. HIP, hydrocortisone, insulin and prolactin. Results shown are
representative of three independent experiments. (B) FACS/TUNEL analysis of proliferating, apoptotic (adherent and non-adherent populations, as in (A) above)
and ECM-overlaid cells. Graph shows exent of terminal transferase (TdT) fluorescent labelling of free 3'-OH ends generated by DNA-fragmentation. Data are
presented as fold induction in incorporation of FITC label over control (samples from the same culture plate to which no TdT was added). Data for each culture
condition were generated from three independent experiments; and (C) Brca1 expression in primary cultured mouse mammary epithelial cells. RT ± PCR analysis
of neu, Bax, b-casein, WAP, Brca 1 and gpdh in total RNA samples from proliferating (P), apoptotic (7E) or ECM-overlaid (+E) cultured primary mammary epithelial
cells. Results of gpdh analysis at 25 cycles of amplification and where RT was omitted from the first strand synthesis step are also presented. The Brca1 RT ± PCR
analysis presented is representative of six independent experiments
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of milk protein genes in the presence of lactogenic
hormones):55,57 In Figure 2C it can be seen that transcripts
of milk protein genes, b-casein and WAP (panels 3 and 4),
are detectable in the population of cells cultured in the
presence of ECM overlay and lactogenic hormones but not
in the proliferating cells or those cultured in the absence of
ECM overlay (panels 3 and 4). We could additionally define
that expression of transcripts encoding the oncoprotein
receptor, neu, was only detectable in the proliferating cells
(Figure 2C, panel 1). Furthermore, transcripts for the
apoptosis associated protein, Bax, were detectable in the
proliferating and apoptotic cell populations but were
undetectable after ECM-overlay (panel 2). Against this
background we analyzed Brca1 transcripts in the primary
cultured cells (panel 5): transcripts were detected in the
proliferating cells, and in the population of cells not overlaid
with ECM but were not detectable in the ECM-overlaid cells.
(gpdh transcripts were equally detectable in all three cell
populations (panel 6)). These results suggest that overlay of
primary mammary epithelial cells with laminin-rich ECM
which ensures cell survival and is permissive for cell
differentiation is also sufficient to suppress Brca1 gene
expression. We hypothesise that ECM (laminin) interactions
with b1-integrin receptors55,59 ± 61 on the alveolar epithelial
cell membrane contributes significantly to the suppression of
Brca1 expression in later lactation (Figure 1B).

In summary our results lead us to three major conclusions:
(1) That Brca1 expression in both model systems studied, in
vivo and in vitro (primary cell culture), is primarily linked to cell
proliferation; (2) That Brca1 expression in both model systems
studied is repressed in the fully differentiated, `surviving',
mammary epithelial cell; with cell interaction with laminin-rich
ECM being shown for the first time to be central to this
repression; and (3) That Brca1 expression in populations of
mammary epithelial cells committed to apoptosis may differ
depending on the cells physiological status: where the
apoptotic population has been previously associated with
ECM no Brca1 expression is seen; where the apoptotic
population has not been associated with matrix Brca1
expression is maintained.

Discussion

The data reported here for both the in vivo and cell culture
studies suggest that Brca1 expression is primarily linked to
mammary epithelial cell proliferation. In vivo, expression is
seen in the virgin animals, during a period reported to exhibit
active epithelial cell proliferation in the terminal end buds,
structures associated with the establishment of the mature
mammary tree.62,63 Expression was also seen in early and
late pregnancy; the former period associated with intense
branched ductal expansion, the latter with alveologenesis and
differentiation. Additionally, expression is reported for the first
time during the final proliferative pulse,51 at the beginning of
lactation. Finally, we show Brca1 expression in primary
cultures of mid-pregnant mammary epithelial cells proliferat-
ing in the presence of foetal calf serum and EGF (Figure 2C).
The pattern of Brca1 expression reported here for the mouse
mammary gland is similar (but extends to early lactation) that
reported by Marquis et al37 and Rajan et al47 and parallels the

expression pattern reported for Brca2.39,47 These authors
have also reported Brca1 expression in proliferating
mammary epithelial HC11 cells.37,47 Particularly interesting
is the finding in this and the latter studies that Brca1
expression would seem to accompany mammary epithelial
cell proliferation whenever it occurs, and it occurs in the gland
under a range of differing humoral and local influences (i.e. in
the TEB of the virgin, during early and late pregnancy, and
early in lactation). That the Brca1 expressed in the mammary
gland during periods of avid proliferation is absolutely required
for mammary gland development has been demonstrated by
Xu et al64 who selectively restricted full-length Brca1 isoform
production in pregnant mammary gland using the Cre ± loxP
recombination system under the control of the Wap and
MMTV promoters. Without the full-length Brca1 isoform,
mammary tissue failed to fully develop during pregnancy:
The ductal tree formed incompletely and failed to fully
penetrate the mammary fat pad and there was a frequent
increase in apoptosis. The authors felt that cellular loss of full-
length Brca1 isoform deprived the cells of a crucial genome
`caretaker'. This would result in frequent genetic alterations
and cell loss by apoptosis, triggered by `gatekeepers' such as
p53. That these animals also succumbed to mammary
tumours strengthened their case. The Brca1 molecular
machinery may also contribute significantly to alveologen-
esis: This is suggested by the observation that BARD-1-
deficient mammary epithelial cell clones lost the capacity to
form luminal structures in three-dimensional collagen gels.
BARD1 (BRCA1-associated RING domain protein) was
identified as a protein which functionally interacts with
BRCA1.20

Brca1 expression in both model systems studied was
repressed in the fully differentiated cells (Figures 1B and 2C);
with cell interaction with the laminin-rich ECM being most likely
responsible for this repression. The association of the
mammary epithelial cell with the laminin-rich ECM through
occupation of b1-integrin receptors provides a strong survival
signal to the mammary epithelial cell56,57 at least in part
through activating an insulin/IGF-1 modulated anti-apoptotic
PI-3 kinase/Akt transduction cascade.65 ± 67 Mammary epithe-
lial cells in primary culture require both ECM-association and
insulin (or IGF-1) for survival.56,57 Farrelly et al61 have
demonstrated the ECM-survival stimulus to act through
insulin/IGF-1-regulated PI 3 kinase pathway-dependent
signalling. The pathway would presumably regulate the
activity of pro- or anti-apoptotic members of the Bcl 2 family
of proteins. Additionally, ECM-cell contacts are suggested to
affect nuclear shape (and gene expression) by determining
stress fibre tensility through the formation of focal adhe-
sions.68 This may impact on rates of transcription of specific
genes. For instance, it has been possible to define elements
within the promoters of the b-casein and TGF-b genes that are
ECM-sensitive, the former mediating a positive response,69,70

the latter a negative response71 to mammary epithelial cell-
ECM association. Perhaps it is by such a mechanism that
ECM suppression of Brca1 expression occurs.

A comparison of Brca1 expression in the two model
systems studied revealed that Brca1 expression in popula-
tions of mammary epithelial cells committed to apoptosis
seems to differ depending on the cell populations physiolo-
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gical status. In the population of fully differentiated alveolar
epithelial cells which predominate in lactation we observed
that Brca1 expression becomes repressed after the final
wave of proliferation of early lactation (Figure 1B). This is
most likely regulated by ECM-cell interaction (Figure 2C). In
this, the population of cells lost by apoptosis in early
involution, Brca1 expression remains suppressed. It is
interesting that while the expression of a variety of cell
cycle/ G1 associated genes become activated in early
involution-associated apoptosis52,72,73 Brca1 expression
remains repressed. Although there is no gross destruction
of ECM as yet in the early involuting gland that exhibits high
levels of apoptosis (e.g. the two day involuting gland52), it is
likely that there might be change in the status of laminin-
integrin receptor interactions at this time, thus, it is not clear
that ECM-cell associations are responsible for maintaining
this repression of Brca1 expression. The mammary gland of
early parturition of the conditional Brca1 knockout mouse
exhibits high levels of apoptosis.64 This parallels our findings
in early involution and might support a hypothesis that the
Brca1-minus state is `pro-apoptotic' for differentiated
mammary alveolar epithelial cells. However, the increased
apoptosis seen in the knockout mouse at early parturition
might reflect the clearing of a population of cells with DNA-
damage that arose during the last wave of `proliferation
without an intact cell cycle surveillance system.' In the cell
culture model (Figure 2) Brca1 expression persisted after cell
proliferation has ceased, in a population of cells that are
quiescent, exposed to `lactogenic hormones (prolactin,
hydrocortisone and the required survival factor, insulin) but
are undergoing extensive apoptosis because of a lack of
association with a suitable laminin-rich ECM. As the Brca1
expression measurements were made 48 h after removal of
the growth factors (serum and EGF) we feel the persistent
Brca1 expression is not residual to the effects of growth factor
exposure during proliferation. Other growth factor responses,
e.g. Erk1/Erk2 activation, are lost within 6 h of growth factor
removal (D Finlay and F Martin, unpublished observation). It
is important to note that the cell culture experiment (Figure 2)
does not model a transition of mammary epithelial cells from
differentiated to apoptotic state (equivalent to the lactation to
involution transition) but rather demonstrates the rescue by
suitable ECM-association of a cell population that will
otherwise die due to lack of this survival influence. This
experiment shows that apoptosis of mammary epithelial cells
can also occur in the presence of Brca1 expression, but, in
cells in which Brca1 expression has not previously been
repressed by terminal differentiation. This apoptotic popula-
tion expressing Brca1, were it being considered to directly
reflect a physiological population may parallel those cells in
the terminal end-bud of the young adult virgin gland which
when `non-differentiated' in the bud, die by apoptosis while
another population proliferate and survive to contribute to
branching of the mammary tree.63 Interestingly these latter
cells would die at a time when the glandular Brca1 expression
is high (Figure 1B). Thus, our study suggests that Brca1
expression is most likely associated with proliferation in the
mammary gland; it may be permitted in the dying population
of the terminal end bud but it is finally repressed in the gland
at lactation which is quantitatively dominated by a population

of alveolar epithelial cells most of which are not again going to
re-enter the cell cycle but will die by apoptosis.

Materials and Methods
Mammary tissue dissected from virgin (5-week-old), pregnant,
lactating and weaned CD1 mice was snap frozen in liquid nitrogen
and stored at 7708C for subsequent RNA preparation. A fourth
(inguinal) mammary gland was used for methacarn fixed, carmalum
stained whole mount preparation, as described by Edwards et al.50

Primary mammary epithelial cell cultures59,74,75 were prepared from
mammary glands from 14 ± 19 day pregnant CD-1 mice, as recently
described.57 After growing under `proliferating' conditions for 48 h,
populations of `apoptotic cells (`minus ECM')', cultured in the absence
of serum and EGF and the absence of ECM (Matrigel) overlay but in
the presence of lactogenic hormones and `surviving/differentiated cells
(`plus ECM')' cultured in the absence of serum and EGF, but in the
presence of ECM (EHS tumour-derived ECM, Matrigel (Becton
Dickinson)) overlay and lactogenic hormones, were prepared.57

These were subsequently harvested for FACS-cell cycle analysis,
FACS/TUNEL and total RNA isolation and RT ± PCR analysis. FACS-
cell cycle analysis was carried out as recently described.57

For FACS/TUNEL76 analysis cultured cells were recovered from
the medium by centrifugation or gently scraped off into PBS and
pelleted. They were resuspended in a 1% solution of formaldehyde in
PBS and fixed on ice for 15 min, washed in PBS, resuspended in ice-
cold 70% ethanol and left at 48C for at least 30 min. The cells were
washed in PBS and resuspended in 50 mL TdT reaction medium
(37.8 mL H2O; 5 mL 106TdT buffer (300 mM Tris base, 1.4 M sodium
cacodylate (pH 7.2)) and 10 mM cobalt chloride); 5 mL cobalt chloride
(25 mM); 2 mL biotinylated-16-dUTP (1 nM) and 0.2 mL TdT
(25 U.mL71). The samples were incubated at 378C for 30 min, then
washed in PBS and resuspended in staining buffer (54.2 mL MilliQ
water; 25 mL 206SSC; 20 mL 25% BLOTTO; 0.7 mL FlTC-conjugated
Extravidin (Sigma) and 0.1 mL Triton X-100) and stained in the dark at
378C for 30 min. The cells were then washed and stored in PBS at
48C, in the dark, until analyzed in a FACStar Plus flow cytometer. Total
RNA was prepared by the method of Chomczynski and Sacchi77 from
snap frozen mouse mammary tissue and primary cultured cells,
treated as outlined above. Aliquots of total RNA were treated with
RNase-free DNase I (Boehringer Mannheim) and the RNA concentra-
tion determined spectrophotometrically. 2 ± 10 mg of DNase I-treated
total RNA was transcribed with Superscript2 II RNase H-minus
reverse transcriptase (GibCo BRL) in the presence of 100 ng ± 1 mg of
the appropriate reverse primer. Ten per cent of the first strand cDNA
synthesis reaction was used as template for PCR in a Taq catalysed
amplification using the appropriate primer pairs: for Brca1, fwd: 5'
TCGGCGCTTGCAAGTACGGATCT 3' ; rev: 5' AAGGTTAGA-
CAGCTGGACACCTA 3' (see Figure 1); for b-casein, fwd: 5'
GCCTTGCCAGTCTTGCTA 3' ; rev: 5' GGAATGTTGTGAGTGGC
3';78 for WAP, fwd: 5' AAAAGCCAGCCCCATTGA 3'; rev: 5'
AGGGTTATCACTGGCACT 3';78 for Bax, fwd: 5' GGTTTCATCCAG-
GATCGAGCAG 3'; rev: 5' CCGTCTGGCACTGGTAGA 3';56 for gpdh,
fwd: 5' CCTTCATTGACCTCAACTAC 3'; rev: 5' TTCACACCCATCA-
CAAAC 3';78 and for neu, fwd: 5' CGGAACCCACATCAGGCC 3'; rev:
5' TTTCCTGCAGCAGCCTAC 3'.79 Taq polymerase addition was
witheld until after a `hot start' cycle, 958C for 2 min and cooling to 808C
after which the enzyme was added. Each PCR cycle consisted of a
denaturing step at 958C for 30 s, an annealing step at 52 ± 608C
(optimised for individual primer pairs) for 45 s and a primer elongation
step at 728C for 80 s. Depending on the abundance of target mRNA
present in the starting sample, 18 ± 40 cycles of PCR amplification
were carried out.
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