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Abstract
Regulation of the p53 tumor suppressor protein occurs to a
large extent through control of protein stability, and the MDM2
protein has been shown to play a key role in targeting p53 for
degradation. Stress signals that activate the p53 response
lead to stabilization of p53 through inhibition of MDM2
mediated degradation, and it is becoming evident that a
numberof mechanisms exist toabrogate this activity ofMDM2.
Other members of the p53 protein family may also be regulated
through protein stability, although MDM2 is not responsible
for the degradation of p73. Nevertheless, interactions of p63
and p73 with MDM2 or p53 have been described, suggesting
that each of the p53-related proteins can play some role in
regulating the activity of the others
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Common themes, different players:
Regulation of p53, p73 and p63

The tumor suppressor protein p53 has been studied
intensively over the past decade, and it is clear that p53
activity plays an important role in preventing tumor develop-
ment. p53 is a potent inhibitor of cell growth and so control of
p53 activity is essential during normal growth and develop-
ment. Regulation of p53 has been described at the level of
transcription and translation,1 and through allosteric regula-
tion of p53 conformation.2 However, by far the most attention
has been directed to modulation of p53 protein stability which
appears to be one of the critical mechanism by which p53
function is regulated, and the mechanisms through which p53
is degraded have been under intense scrutiny over the past
few years. The recent identification of the p53 related proteins,
p63 and p73, has raised the question of whether all the family
members are regulated through the same mechanisms to
allow for a coordinated response, or whether each protein is
subject to independent regulation. This review aims to
summarize the present models on how the p53 protein is
degraded and how these pathways are inhibited to allow

activation of a p53 response, with comparisons to our, as yet,
less comprehensive understanding of how p73 and p63
activity is controlled.

Key player in the regulatory cellular
concert: MDM2

The importance of regulation of p53 stability was revealed in
key studies showing that DNA damage induced activation of
the p53 response resulted in a rapid increase in protein level
due to a significant increase in protein half-life.3,4 Use of
protease inhibitors and cells lacking components of the
proteasome indicated that the principal regulator of p53
stability is the ubiquitin-dependent proteolytic machinery,5,6

although a role for calpain has also been suggested by
several studies.7 ± 9 Although elegant studies showed that a
viral protein, the human papillomavirus E6 protein, could
efficiently target p53 for degradation,10 a cellular factor that
can regulate the rapid degradation of p53 in normal cells
remained elusive until the MDM2-protein was identified as a
regulator of p53 levels through proteasome-dependent
degradation.11 ± 13 MDM2 has long been known as the
product of a p53 inducible gene,14,15 although there is no
evidence that MDM2 mediates any of the p53-functions such
as cell-cycle arrest or apoptosis.16,17 On the contrary, MDM2
has been shown to inhibit p53 functions by binding to the N-
terminus of the p53 protein and thereby blocking the normal
trans-activating function of this domain.18 ± 21 An autoregula-
tory feedback loop is therefore established between p53 and
MDM2, where p53 activates expression of its own negative
regulator.15 The importance of MDM2-regulation of the p53
protein is reflected in the fact that MDM2 deficient mice show
a very early embryonic lethality which is entirely rescued when
the p53 gene is simultaneously deleted.22,23 This strongly
argues that a crucial function of MDM2, at least during early
development, is the regulation of the growth inhibitory
activities of p53. Furthermore, inhibition of MDM2 activity in
normal cells also leads to elevation of p53 levels and
activation of a p53 response.24,25 Taken together, it seems
likely that the MDM2/p53 feedback loop maintains p53 at low
levels in normally growing, unstressed cells. Perturbation of
this regulatory loop results in stabilization of p53, and this
situation is seen in tumor cells expressing mutant forms of p53
that have lost transcriptional activity. Mutations of this type not
only abolish the tumor suppressive functions of p53 but also
prevent p53 activation of MDM2. The consequence of this is
the stabilization of p53, a characteristic often associated with
mutant p53 in tumor cells.

Having established a role for MDM2 in the degradation
of p53, rapid progress has been made in elucidating the
mechanisms by which MDM2 functions. It has been shown
that MDM2 reduces the intracellular p53 levels in a
ubiquitin-proteasome mediated pathway,11,12 and that
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MDM2 itself can function as an E3 ubiquitin-ligase,
mediating both p53-ubiquitination as well as its own
ubiquitination in vitro.26 ± 28 E3 ligases are required for the
specificity of ubiquitin conjugation, a multi-enzyme process
that leads to the covalent modification of proteins with
ubiquitin,29 and the ubiquitination of p53 and MDM2 itself
requires only E1 (ubiquitin activating enzyme) and E2
(ubiquitin conjugating enzyme) in addition to MDM2.28 This
activity of MDM2 depends on the RING finger in the C-
terminus of the protein and in this respect MDM2 shows
similarity to other RING finger containing proteins that have
intrinsic capacities to mediate ubiquitination.30 It seems
possible that these RING fingers, which vary substantially
in their sequences, may be responsible for the target
specificity of the E3 ligases.28,30

In addition to the role of MDM2 as an E3 ligase, the
efficient degradation of p53 is also dependent on the
nucleo-cytoplasmatic shuttling of MDM2.31 ± 35 The impor-
tance of subcellular transport of MDM2 was demonstrated
by using drugs that block nuclear export31 ± 33 and MDM2-
mutants that are deficient for nuclear export.31,34 Although
these studies are supportive of the model in which MDM2 is
responsible for moving p53 from the nucleus to the
cytoplasm, where degradation occurs through cytoplasmic
proteasomes, it is possible that MDM2 and p53 export from
the nucleus independently. A nuclear export signal has
recently been described in the oligomerization domain of
p53 suggesting direct regulation of p53 export and stability
depending on the oligomerization state of p53.36 Although
the details of this regulation remain to be established,
overall it seems clear that p53 degradation can be
regulated by control of the subcellular localization of p53
and MDM2.

Both p53 and MDM2 have been shown to bind to many
other proteins, and these interactions can also influence the
ability of MDM2 to target p53 for degradation. Several of
these interactions result in the inhibition of degradation, and
may play a role in allowing the activation of p53 (see
below). By contrast, the transcriptional coactivators p300/
CBP appear to play an important role in allowing MDM2
mediated degradation of p53. p300/CBP binding to the
trans-activation domain of p53 is important for the
transcription function of p53 and its growth arrest and
apoptotic functions.37 ± 40 Interestingly, p300 binding has
been shown to be particularly important for activation of
MDM2 expression41 and degradation of p53. In addition,
p300 has been proposed to play a direct role in promoting
degradation of p53 by interacting with both MDM2 and p53
through domains distinct from those important for p300 to
serve as a transcriptional coactivator.42 In this way p300
might act as a binding platform to allow assembly of the
protein complexes necessary for p53 degradation.

New insights into p73-degradation

p73, which shows highest homology to p53 within the core
DNA-binding region, has been shown to trans-activate similar
target genes as p53, although the relative efficiency of
transcriptional activation can differ.43 ± 46 Various isoforms of
p73 stimulate the expression MDM2,47 and since most

studies show that MDM2 also reduces p73-dependent
transcription in different in vitro reporter assays,47 ± 49 it
would appear possible that a similar feedback loop to that
seen with p53 and MDM2 can exist for p73. Inhibition of p73
function by MDM2 is dependent on the interaction between
the two proteins, prompting several studies to determine
whether the stability of p73 is also regulated by MDM2. Like
p53, the p73 alpha protein is degraded though the ubiquitin-
dependent proteasome pathway,46,48 but it is now clear that
MDM2 does not mediate degradation of p73 alpha or beta.47 ±

49 In contrast to its effect on the p53-protein, MDM2 stabilizes
p73 alpha and beta levels,47,50 suggesting that MDM2 binding
may protect p73 from the normal degradative mechanisms
(Figure 1). The basis for the resistance of p73 to MDM2
mediated degradation is not yet understood, although the
observation that the extreme C-terminus of p53, a region not
conserved in p73, is necessary for allowing efficient
degradation in response to MDM251 suggests a contribution
of this region.

Stabilization of p53 upon cellular stress
signals

In order to perform its cellular functions of growth arrest and/or
apoptosis, the basal levels of p53 must be raised quickly in
response to cellular stress signals such as DNA damage,
oncogene activation or hypoxia. During the last years
considerable insight has been gained as to how p53 can be
stabilized and activated, and how the normally efficient
degradation of p53 can be inhibited. Most of these studies
have focused on the elucidation of how p53 can overcome
MDM2-mediated degradation, and how the feedback-loop
between p53 and MDM2 can be interrupted.

It seems clear now that the MDM2-mediated degradation
of p53 can be overcome through several independent
mechanisms (Figure 2). One of the most straightforward
ways to stabilize p53 would be to prevent the p53/MDM2
interaction by stress signal induced modifications of p53 or
MDM2 or both. Various DNA-damaging agents which
stabilize p53 have been shown to induce site-specific
phosphorylation of p5352 and many kinases, including ATM,
ATR, DNA-PK, JNK and CKI, can phosphorylate the N-

Figure 1 MDM2 binds to p53 and p73, resulting in degradation of p53 and
stabilization of p73
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terminal portion of p53 in vitro.53 Various studies have
shown that phosphorylation of the p53-protein or p53-
peptides at serine 15, serine 20, serine 37 or threonine 18
reduces the interaction between p53 and MDM254 ± 57 and
these observations are supported by the structural
requirements for p53 and MDM2 to form a complex.58

Mutant p53 with substitutions of both serines 15 and 37 to
aspartic acid, mimicking phosphorylation of those two sites,
is slightly resistant to complete degradation by MDM2,59

while mutation of serine 20 to a non-phosphorylable amino
acid results in enhanced sensitivity to degradation.55 The
dependence on phosphorylation of any of these sites has
been difficult to prove however, and mutation of all possible
phosphorylation sites in this N-terminal region of p53 does
not prevent efficient stabilization in response to DNA
damage.59,60 Indeed, it is becoming evident that different
patterns of phosphorylations occur in response to different
stress signals, suggesting that specific phosphorylation, or
combinations of phosphorylation may contribute to re-
sponses to various forms of stress. In cells, ATM and the
ATM-Rad3-related protein ATR have been shown to play a
role in activation of p53 following DNA double-strand
breaks, but other kinases are also likely to contribute to
different stress responses.61 It seems most likely that
phosphorylation of p53 can contribute to the stabilization of
the protein in response to some activating signals, but that
this modification is not essential for inhibition of MDM2
mediated degradation.

Another possible target for the above mentioned kinases
is MDM2, which is also a phosphoprotein18,62 and
modifications of MDM2 might inhibit its ability to target
p53 for degradation. In vitro experiments have shown that
MDM2 can be phosphorylated by DNA-PK and that this
phosphorylation blocks its association with p53.63 MDM2
was found to be phosphorylated by casein kinase 2 in
vitro,64 although so far none of these results have been
confirmed in vivo.

p53-stabilization by ARF

One phosphorylation-independent mechanism of p53-stabili-
zation that has emerged during the past year involves
activation of expression of the human p14ARF (mouse
p19ARF) protein. The ARF protein is encoded by the
INK4a-ARF locus which encodes two distinct proteins
translated from alternatively spliced mRNAs: the a-transcript
comprising exons 1a, 2 and 3 specifies p16INK4a, a cyclin-
dependent kinase inhibitor65 ± 67 and an alternative product,
ARF (`alternative reading frame') encoded by exons 1b, 2 and
3.68 ± 70 The importance of the ARF-INK4a locus is reflected in
the fact that it shows genetic alterations in human cancers
almost as often as the p53 locus66,67,71,72 and that ARF-
deficient mice develop tumors.73 Furthermore, in human
tumor cell lines retention of wild-type 53 often goes together
with a loss of ARF expression74 suggesting that these two
proteins participate in the same tumor suppressive pathway.

The first hint that ARF might function in a pathway
involving p53 came from the observations that ARF can
arrest cell-cycle progression and block myc/ras transforma-
tion through a p53-dependent mechanism.73 ± 77 ARF
functions by binding directly to MDM2 in a region distinct
from the p53 binding domain, and prevents degradation of
p53 without inhibiting the ability of p53 and MDM2 to
interact.74 ± 77 In in vitro assays ARF can inhibit the
ubiquitination function of MDM2,26,27 preventing both p53
ubiquitination as well as the auto-ubiquitination of MDM2
itself.27 Although direct inhibition of MDM2's E3 ligase
activity would efficiently prevent p53 degradation, recent
studies have shown that ARF also has the ability to interfere
with the nucleo-cytoplasmic shuttling of MDM2 that is
essential for p53 degradation.31,32,34,78 Expression of ARF
leads to the relocalization of MDM2 from the nucleoplasm
into the nucleolus35,79 leaving p53 in the nucleoplasm where
it is free to activate expression of the mediators of the p53.
This nucleolar relocalization depends on signals in the ARF
protein, and mutations of the nucleolar localization signal
results in the retention of both proteins in the nucleoplasm.78

Role of E2F1 in the activation of p53

Activation of p53 appears to be a general response to many
types of stress, including DNA-damaging events and
abnormal proliferative signals. The mechanisms underlying
the response to abnormal proliferation have become evident
with the realization that deregulated expression of the E2F-
transcription factors, which control the expression of many
genes necessary for cell growth, can also induce both p53
and p73. Loss of the normal regulation of the E2F family is a
very common event, found in most cancers,80 strongly
suggesting that uncontrolled expression of these transcrip-
tion factors is necessary for tumor development. A failsafe
mechanism to protect from such events is revealed by the
ability of one family member, E2F-1, to activate apoptosis.81 It
is becoming apparent that this E2F-1 response can be carried
out in a p53-dependent and a p53-independent fashion, and
loss of p53 significantly diminishes the apoptotic response to
deregulated E2F-1 expression (Figure 3). Deregulation of
E2F-1 leads to the stabilization and activation of p53, a

Figure 2 Inhibition of MDM2-mediated degradation of p53 occurs through
multiple mechanisms
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function at least partially mediated by the ability of E2F-1 to
transcriptionally activate ARF expression (Figure 3).82

Interestingly, several oncogenes, including Ras, Myc, v-Abl
and E1A, also lead to p53-stabilization via ARF,83 ± 86 and it is
possible that deregulation of E2F-1 in response to the
activation of these mitogenic oncogenes contributes to this
protective response. Therefore, the overall picture emerges
that ARF seems to be a central player to protect normal cells
against oncogenic stimuli, through stabilization of p53 and
elimination of cells that have acquired unregulated prolifera-
tive signals. An interesting picture of how complex these
interconnected regulatory activities are emerged with the
observation that E2F-1, which is regulated by ubiquitin-
dependent degradation and physically interacts with
MDM2,87,88 also appears to be targeted for degradation by
MDM2.89

Despite the importance of the ARF/p53 pathway in
mediating the apoptotic activity of E2F-1, there is evidence
that E2F-1 engages additional mechanisms to prevent
aberrant growth of cells. Firstly, the ability of deregulated
E2F-1 to stabilize p53 is not entirely dependent on ARF
expression, and in several systems oncogenic changes that
lead to loss of normal control of regulation and E2F-1 activity
can stabilize p53 in ARF null cells.90,91 Secondly, E2F-1
shows strong apoptotic activities even in the absence of
p53,92,93 a function that appears to reflect several activities of
E2F-1. E2F-1 has recently been shown to induce apoptosis in
the absence of p53 by a death receptor-dependent
mechanism, in which E2F-1 sensitizes cells to apoptosis in
response to TNFa94 by inhibiting anti-apoptotic responses,
including activation of NF-kB (Figure 3). A further p53
independent function of E2F-1 involves the p53 family
member p73, and E2F-1 expression has recently been
shown to induce transcriptional activation of p73. Since p73
shows apoptotic activities like p53,95 increased p73
expression in response to E2F-1 is likely to mediate at least
some of the p53 independent death induced by E2F-1.

The ability of p53 family proteins to influence each other
is highlighted by reports that tumor-derived p53-mutants

can interfere with the functions of endogenous p73 and
the ability of some isoforms of p63 to function as dominant
negative inhibitiors of both p63 and p53.96,45 Thus, it
appears that the different p53 family members might
influence each other's activity as well as each other's
stability.

Inhibition of MDM2-mediated degradation
of p53 by other mechanisms

In addition to ARF, several other proteins have been
shown to stabilize p53 by inhibition of MDM2 mediated
degradation, either by binding to p53 or MDM2. c-Abl
binding to p53 was shown to inhibit degradation of p53
without impinging on the interaction with MDM2,97 and
stress-activated JNK has been suggested to lead to
increased p53 levels by abrogating p53-interactions with
MDM2.56 Binding of RB to MDM2 has also been shown to
result in the inhibition of p53 degradation without
preventing the p53-MDM2 interaction,98 and interestingly
in this situation RB was shown to selectively induce the
apoptotic response to p53, but not p53's transcriptional
activity. b-catenin also protects p53 from ubiquitin-mediated
degradation which is both MDM2-dependent and indepen-
dent.99

Regulation of sub-cellular localization is also emerging
as an important mechanism to control the p53 protein
stability. In a certain subset of human tumors, including
neuroblastoma, p53 is sequestered in the cytoplasm and
this stable p53 appears to be resistant to MDM2, probably
due to a covalent modification.100,101 Also, stress induced
p53 stabilization may result from cytoplasmic sequestration.

There is also evidence now that certain stress signals
lead to transient decrease of MDM2-expression, which
would allow p53-stabilization. Thus, inhibition of MDM2
mRNA-expression has been reported after treatment with
several DNA damaging agents as well as after treatment
of cells with kinase inhibitors that lead to stabilization of
p53.61,89,102,103

Figure 3 The E2F-1 transcription factor activates transcription of ARF leading to elevated p53 protein, and induces degradation of Traf2 and inhibition of survival
signal activation
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MDM2-independent regulation of p53 and
p73 stability

In addition to MDM2-regulation of p53 stability, other
mechanisms to control ubiquitin dependent degradation of
p53 have also been described. One of these involves the Jun-
(amino)-terminal kinase (JNK), which had been shown
previously to mediate the ubiquitination and degradation of
other target proteins like c-Jun104 and ATF2.105 JNK has also
been found to form associations with p53 in nonstressed cells
and it has been proposed to mediate p53 ubiquitination and
degradation by forming an adaptor-molecule in the E3
ubiquitin-ligase complex.106 This JNK-mediated degradation
is MDM2-independent.

Despite the similarities in their function, and the
observation that, like p53, p73 protein levels are
maintained by ubiquitin dependent degradation, regula-
tion of the degradation of p53 and p73 appears to be
quite distinct. This is highlighted by the response of these
proteins to the oncoproteins expressed by the DNA tumor
viruses, where the human papillomavirus E6 and the
adenoviral proteins function to degrade p53 but not p73.95

Clearly, stability regulation of p73 is not mediated by
MDM2 binding in the same way as p53-degradation and
the signals that activate p73 function are poorly under-
stood. A recent step forward in this field came with the
observation that p73 could be activated in response to
DNA damage through a pathway involving the non-
receptor tyrosine kinase c-Abl.107 ± 109 Cisplatin treatment
lead to the c-Abl dependent stabilization of p73,107 while
gamma-irradiation resulted in tyrosine-phosphorylation of
p73;108,109 both of these events led to the activation of
p73. Interestingly, c-Abl is itself phosphorylated by
ATM,110 ± 112 linking ATM to the DNA damage induced
activation of both p53 and p73.

Conclusion

It is becoming apparent that the mechanisms regulating the
p53-family of proteins are distinct, although some interest-
ing parallels are beginning to emerge. Abnormal prolifera-
tion and deregulation of E2F-1 can activate both p53 and
p73, albeit through different mechanisms, and c-Abl has
also been shown to participate in the activation of p53 and
p73 in response to DNA damage. The ability of p73 to
respond to these kinds of signals is compatible with at
least some role for p73 in protection from tumor
progression, although the contribution of p73 as a tumor
suppressor gene is likely to be more subtle than that seen
for p53. The role for p73 and p63 during normal
development113 ± 115 suggests the possibility that signals
different from those that activate p53 (which is not
essential during embryogenesis) may play an important
role in regulating p63 and p73 activity, and progress in this
area is likely to be rapid and of great interest.
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