On the complexities of ceramide changes in cells undergoing apoptosis: lack of evidence for a second messenger function in apoptotic induction

Abstract

The generation of cellular ceramides as a second messenger has been implicated as a regulatory and required step for the induction of apoptosis. In this study, we have applied a recently developed mass spectrometric technique to the determination of changes in physiological ceramide levels during apoptosis induced by tumor necrosis factor plus cycloheximide in U937 cells and the chemical agents anisomycin or geranylgeraniol in HL-60 cells. The mass spectrometric method has significant advantages over traditional methods for ceramide quantitation in that it determines the relative abundance of all ceramide species present in complex biological lipid mixtures individually and simultaneously. We quantitiated ceramides ranging from C14 to C26, finding that their basal levels and relative distribution varied significantly, both within and between different cell types. However, we were not able to detect any significant changes in either total ceramide content or species distribution until 1 h or more post-stimulation with any of these treatments, by which time the cells were in an advanced stage of apoptosis. Differences were also seen between all three treatments in the ceramide species distribution observed in these late stages of apoptosis. These data indicate that in vivo ceramide generation occurs as a consequence of apoptosis rather than as an essential second messenger involved in its induction. They also pose new questions about the potential roles that certain ceramide species may play in the late stages of apoptosis, and demonstrate a clear need to utilize the resolving power of mass spectrometry-based assays in any future investigations into the biological function of ceramides.

Author information

Correspondence to Julian D Watts.

Additional information

Edited by R.A. Knight

Rights and permissions

Reprints and Permissions

About this article

Keywords

  • mass spectrometry
  • electrospray ionization
  • precursor ion scanning
  • tumor necrosis factor
  • anisomycin
  • geranylgeraniol

Further reading