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At present, mammalian caspases comprise a group of at
least 13 protease members which either generate mature
pro-inflammatory cytokines or promote apoptosis (Cohen,
1997; Nicholson and Thornberry, 1997; Van de Craen et al,
1997; Humke et al, 1998; Schulze-Osthoff et al, 1998).
Based on phylogenetic analysis and positional scanning
studies of their peptide substrates, caspases can be divided
into three subfamilies: The ICE-like protease family includes
caspase-1, -4, -5 and -13 as well as murine caspase-11 and
-12, for which no human equivalents have yet been
identified. The Ced-3 subfamily includes caspase-3, -6, -7,
-8, -9 and -10, whereas the third subfamily consists of only
one member, caspase-2. Within each subfamily, the peptide
sequence preferences in the substrates are remarkably
similar or even identical. This demonstrates that, at least in
some cases, different caspases can cleave the same
substrates, suggesting some degree of functional redun-
dancy within the caspase family.

Central to the understanding of the molecular mechan-
ism of cell death is the identification of caspase targets and
the elucidation of the consequences of proteolytic
cleavage. Thus far, more than 60 proteins have been
found to be cleaved by caspases, and new substrates are
continuously being identified (Table 1). Given the great
number of different caspases, the list of substrates is still
relatively small. For most proteins, the consequences of
cleavage are poorly understood. In a few cases, however,
proteolysis of certain components can be linked to discrete
morphological changes of cell death.

Which requirements should an apoptosis-relevant cas-
pase substrate meet? Because apoptosis is an ordered
sequence of rather stereotypical alterations in every cell
type, one would predict that caspase substrates should be
ubiquitously expressed and evolutionary conserved, at least
in their aspartate cleavage site. The known substrates of
caspases can be loosely categorized into a few functional
groups including proteins involved in scaffolding of the
cytoplasm and cell nucleus, signal transduction and
transcription-regulatory proteins, cell-cycle controlling com-
ponents and proteins involved in DNA replication and repair.
In addition, activation of members of the first subfamily of
caspases, caspase-1 and presumably caspase-4 and -5,

results in the processing of cytokine precursors, which are
presumably not directly involved in cell death.

While some substrates are functionally inactivated upon
caspase-mediated cleavage, other proteins and enzymes
can be activated, mostly by cleavage of an inhibitory or
regulatory domain within the caspase target. In most cases
the physiological consequence of this gain-of-function
cleavage for apoptosis remains unclear. Caspase-
mediated cleavage should result in different net effects: (i)
a halt of cell cycle progression, (ii) disabling of repair
mechanisms, (iii) disassembly of molecular structures, (iv)
cell detachment, and (v) tagging of the apoptotic cell for
engulfment by phagocytes.

A number of structural proteins in the cell nucleus and
cytoplasm have been identified to be cleaved by caspases,
such as actin, fodrin, catenins, keratins, Gas2 and lamins
(for references see Cohen, 1997; Nicholson and Thornberry,
1997; Porter et al, 1997; Tan and Wang, 1998; Cryns and
Yuan, 1998). Degradation of lamin B which is predominantly
mediated by caspase-6 may lead to the disassembly of the
nuclear envelope and the final collapse of the cell nucleus
(Rao et al, 1996). In contrast, cleavage of gelsolin, a
cytoplasmic actin-severing protein, may contribute to
membrane blebbing and other morphological features of
the apoptotic phenotype. Gelsolin is cleaved by caspase-3
to generate a constitutively active fragment that can
depolymerize F-actin (Kothakota et al, 1997). Interestingly,
gelsolin-deficient cells show a strong delay in membrane
blebbing when exposed to apoptotic stimuli. It has been also
reported that actin can be directly cleaved by caspases in
pheochromocytoma and ovarian carcinoma cells (Kayalar et
al, 1996; Chen et al, 1996), whereas in many other cell types
no cleavage could be detected (Song et al, 1997). Thus, it is
possible that certain protein cleavages may be cell type-
specific which may also due to variations in the expression
of individual caspases in different cell types. Activation of
caspases may be not only required for destruction of the
cell's architecture, but also necessary for the detachment
and clearance of an apoptotic cell from the embedding
tissue. Indeed, some caspase substrates participate in cell
adhesion, such as b-catenin, plakoglobin and focal adhesion
kinase (Brancolini et al, 1997; 1998; Herren et al, 1998;
Crouch et al, 1996; Levkau et al, 1998a).

A strikingly large number of caspase targets are involved
in cell cycle regulation and DNA repair mechanisms. One of
the first death substrates found to be cleaved by caspases
was poly(ADP-ribose)polymerase (PARP), which catalyzes
the transfer of ADP-ribose polymers to nuclear proteins
(Tewari et al, 1995). As DNA strand breaks activate the
enzyme, PARP has been proposed to trigger DNA damage-
induced apoptosis by depleting NAD stores. On the other
hand, due to its role in DNA repair, cleavage of PARP may
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compromise most of its DNA repair activity, and thus may
contribute to the demise of the cell. However, PARP7/7

mice neither reveal a phenotype which would indicate a
crucial role in apoptosis nor is the sensitivity towards CD95-
and TNF-R1-mediated apoptosis affected (Wang et al,
1997). Thus, cleavage of PARP may be a characteristic
event or a bystander effect, but is presumably dispensable
for most apoptotic pathways.

Retinoblastoma protein (RB) and the mouse double
minute-2 protein (MDM2) are other examples of caspase
substrates involved in repair mechanisms and cell cycle
regulation (JaÈnicke et al, 1996; Erhardt et al, 1997). MDM2

normally retains p53 in the cytoplasm, and cleavage may
allow p53 entry into the nucleus to induce cell cycle arrest
or apoptosis. However, since apoptosis also occurs in
enucleated cells, cleavage of nuclear proteins may be not
essential for all apoptotic processes. It has been
furthermore reported that cyclin A is cleaved during
apoptosis of Xenopus oocytes after treatment with
hydroxyurea or cycloheximide (Stack and Newport, 1997).
However, the caspase cleavage site of cyclin A is not
conserved in mammalian cells, and the protein is not
cleaved in a variety of apoptotic systems. Thus, one should
not generalize a reported caspase substrate for all species.

Table 1 Caspase substrates

Cytoskeletal and structural proteins

. Fodrin

. b-Catenin

. Plakoglobin1,2

. Actin

. Gelsolin

. Keratin-18,719

. Gas2

. Lamins

Cortical cytokeleton
Cell adhesion
Cell adhesion
Cytoskeleton
Actin-severing protein
Intermediate ®laments
Micro®lament organization
Nuclear envelope

Cell cycle and replication
. Topolsomerase-I
. MCM3 nuclear replication

factor3

. DNA replication complex C
(DSEB/RFC140)

. MDM2/HDM2

. NuMA

. Retinoblastoma protein (Rb)

. p21 (Cip1/Waf1)4

. p27 (Kip1)4

. Wee 15

. Cdc275

. Cyclin A

DNA replication
DNA replication

DNA replication

Inhibitor of p53
Nuclear mitosis apparatus protein
Assembly of the repressor

complex
Cdk2 inhibitor
Cdk inhibitor
Kinase, Cdc2 inhibitor
Anaphase-promoting complex
Mitosis

Transcription and translation
. Sterol-regulatory element-

binding proteins (SREBPs)
. STAT15

. NF-kB (p50, p65)7

. IkB-a

. Sp1

. U1-70 kD sRNP

. Heteronuclear ribonuclear
proteins (hnRNPs C1/2)

Cholesterol metabolism

Signal transduction of cytokines
Cytokine and anti-apoptotic

genes
Inhibitor of NF-kB
Transcription factor
Pre-mRNA splicing
Pre-mRNA splicing

DNA cleavage and repair
. Poly (ADP-ribose)

polymerase (PARP)
. DNA-dependent protein

kinase (DNA-PK)
. Inhibitor of caspase-

activated DNase
(ICAD, DFF)

DNA repair

DNA repair

DNA cleavage

Protein kinases in signal transduction

. Protein kinase Cd

. Protein kinase Cy

. PKC-related kinase-2
(PRK2)

. MEKK-1

. p21-activated kinase
(PAK2, hPAK65)

. PITSLRE kinases

. Focal adhesion kinase

. MST/krs8,9

. Calmodulin-dependent
kinase IV10

Signal transduction
Signal transduction
Signal transduction

MAP kinase pathway
MAP kinase pathway

Cell cycle regulation
Cell adhesion
STE20-related kinase
Signal transduction

Other signal transducers
. Protein phosphatase

2A (PP2A)11

. D4-GDP dissociation
inhibitor (D4-GDI)

. Ras GAP12,13

. p28 Bap31

. cytosolic PLA2

Signal transduction

Inhibitor of small GTPases,
Rho pathway

Ras GTPase activating protein
Bcl-2 adaptor of the endoplasmic

reticulum
Phospholipid metabolism

Cytokine precursors
. Pro-interleukin-1b
. Pro-interleukin-1614

. Pro-interleukin-18
(IFN-g-inducing factor)

Immune regulation
Immune regulation
Immune regulation

Others
. Pro-caspases
. Rabaptin-5
. Calpastatin15,16

. Nedd417

. Bcl-2

. Bcl-xL

. Bid18,19

. hsp9020

. APC protein21

. Huntingtin

. Atrophin-122

. Ataxin-322

. DRPLA-protein23

. Presenilins

Endosome fusion
Calpain inhibitor
Ubiquitin protein ligase
Apoptosis inhibitor
Apoptosis inhibitor
Apoptosis activator
Heat-shock protein
Adenomatous polyposis coli

protein
Involved in Huntington's disease
Involved in neurodegeneration
Involved in neurodegeneration
Involved in neurodegeneration
Involved in Alzheimer's disease

For a partial list of references the reader is referred to Cohen 1997; Nicholson and Thornberry, 1997; Porter et al, 1997; Tan and Wang, 1998; Cryns and Yuan ,1998.
Non-cited and very recently identi®ed caspase substrates are published in 1Herren et al, 1998; 2Brancolini et al, 1998; 3Schwab et al, 1998; 4Levkau et al, 1998b;
5Zhou et al, 1998; King and Goodbourn, 1998; 7Ravi et al, 1998; 8Graves et al, 1998; 9Lee et al, 1998; 10McGinnis et al, 1998; 11Santoro et al, 1998; 12Widmann et al,
1998; 13Wen et al, 1998; 14Zhang et al, 1998; 15Porn-Ares et al, 1998; 16Wang et al, 1998; 17Harvey et al, 1998; 18Luo et al, 1998; 19Li et al, 1998; 20Prasad et al,
1998; 21Browne et al, 1998; 22Wellington et al, 1998. 23DRPLA,dentarorubral pallidoluysian atrophy
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An increasing number of recently identified caspase
substrates are protein kinases or other proteins involved in
signal transduction. In many cases, caspase cleavage
results in the removal of a regulatory protein domain
generating a constitutively active kinase. For instance,
proteolytic activation of the p21-activated kinase PAK2 has
been reported during CD95 and TNF-mediated apoptosis
(Rudel and Buckoch, 1997). As PAK2 is able to trigger
stress-activated kinases of the JNK/SAPK pathway, this
may provide a link between caspases and JNK/SAPK
activation during apoptosis signaling. Interestingly, blocking
the activity of PAK2 by a dominant-negative mutant led to
the inhibition of formation of apoptotic bodies, whereas
nuclear apoptosis and phosphatidylserine externalization
remained unaffected. Therefore, the cleavage of PAK2 is
an example of how different features of apoptosis might be
discriminated at the level of caspase targets.

The activation of certain proteins by caspases is
mediated by a rather limited and specific endoproteolytic
cleavage, which is a general feature of caspase activity.
Among other enzymes activated by caspases are cytosolic
phospholipase A2, protein kinases such as MEKK-1, MST,
the PKC isoforms delta and theta, PKC-related kinase-2,
and transcription factors such as the sterol-regulatory
element binding protein (SREBP)-1 and -2. It still remains
to be established, whether caspase-mediated activation of
one of these molecules is involved in transduction of the
apoptotic signal. It has been also observed that anti-
apoptotic proteins of the Bcl-2 family are cleaved by
caspases (Cheng et al, 1997; Clem et al, 1998). This
cleavage results in their conversion to pro-apoptotic
proteins which may similar act to Bax and thereby amplify
an apoptotic signal. Similarly, it has been observed that
during death receptor-mediated apoptosis caspase-8 can
cleave the Bcl-2 member Bid into an active C-terminal
fragment that induces the pro-apoptotic release of
cytochrome c from mitochondria (Luo et al, 1998; Li et al,
1998). A caspase-mediated activation of cellular functions
has been recently provided by the identification of a novel
murine endonuclease, designated CAD for caspase-
activated DNase (Enari et al, 1998). CAD is sequestered
in the cytosol as a latent form by binding to the inhibitory
subunit, called ICAD, whose human homologue has been
previously identified as DNA fragmentation factor (DFF)
(Liu et al, 1997). Upon induction of apoptosis, ICAD/DFF is
cleaved by caspase-3, which allows the DNase to
translocate to the nucleus and to degrade DNA. Interest-
ingly, overexpression of ICAD blocks chromatin changes of
apoptosis but does not abrogate other morphological
alterations.

The cleavage of some substrates can be directly linked
to the pathogenesis of certain diseases. Huntington's
disease, a genetically determined neurodegenerative
disease, results from the expansion of CAG triplets at the
5'-primed end of the gene encoding huntingtin, a protein
with a long polyglutamine stretch. Huntingtin is cleaved by
caspase-3 and results in an N-terminal fragment which is
directly cytotoxic for neurons (Goldberg et al, 1996).
Huntington's disease manifests only when huntingtin
exceeds 35 glutamine residues. Because the rate of

caspase cleavage of huntingtin correlates with the length
the polyglutamine stretch, accumulation of the fragment
may cause a vicious cycle. It is interesting to note that,
although mutated huntingtin is ubiquitously expressed, the
genetic lesion is associated with apoptosis only in certain
brain regions. A pathogenic role of caspase cleavage has
been also implicated in other neurodegenerative disorders.
Similar to huntingtin, the polyglutamine tract proteins
atrophin-1, ataxin-3 and DRPLA-protein are caspase
substrates (Wellington et al, 1998; Miyashita et al, 1997).
The cytotoxic properties of their cleavage products illustrate
that specific caspase substrates may be not only involved
in the destruction of the cell, but also fulfil an active role in
the exacerbation of the apoptotic process.

Is there a single caspase substrate whose cleavage is
critical or relatively more important for cell death? It should
be pointed out that thus far none of the cleavage events
has been shown to be absolutely required to kill cells.
Although ectopic overexpression of non-cleavable mutants
(for example of Rb, PAK-2 or MEKK-1) delays some forms
of apoptosis or inhibits certain morphological features of
cell death, in any case, final cell death could not be
prevented. This is in contrast to the effect of pharmaceu-
tical caspase inhibitors and may suggest that a critical
death substrate might not have been identified yet. More
likely, however, is that apoptosis requires `a thousand cuts'
(Martin and Green, 1995), each contributing to a part of the
apoptotic phenotype. The cleavage of multiple substrates
with key homeostatic and structural functions may then
collectively culminate in the systematic and orderly
disassembly of the apoptotic cell.
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