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Abstract
Lens cells demonstrate a terminal differentiation process with
loss of their organelles including nuclei. Chromatin disap-
pearance is characterised by the same changes as most
apoptotic cells, i.e. condensation of chromatin and cleavage
into high molecular weight fragments and oligonucleosomes.
The endo-deoxyribonucleases (bicationic (Ca2+, Mg2+),
mono-cationic (Ca2+ or Mg2+) and acidic non-cationic
dependent nucleases) are present in lens fibre cells. Our
results suggest that the acidic non-cationic nuclease
(DNase II) plays a major role in chromatin cleavage. This
nuclease, known to be lysosomal, is found in lens fibre nuclei
and only an antibody directed against DNase II inhibits the
acidicDNAcleavageof lensfibrenuclei. Inaddition, theremust
be another DNase implicated in the process which is not
DNase I but appears to be a Ca2+, Mg2+ dependent molecule.
Regulation of these DNase activities may be accomplished by
the effect of post-translational modifications, acidic pH,
mitochondrial release molecules, growth factors or onco-
genes. Finally, fibre cells lose organelles without cytoplasmic
elimination. The survival of these differentiated cells might be
due to the action of survival factors such as FGF 1.
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Introduction

The eye lens is a useful model for the examination of many
fundamental processes occurring during embryonic develop-
ment (reviewed by Cvekl and Piatigorsky, 1996; Wride, 1996;
Zelenka et al, 1996; Lang, 1997). Cellular differentiation of the
lens is accompanied by nuclear degeneration similar to that
appearing during apoptosis.

This avascular organ (Figure 1), surrounded by a
capsule, is composed of a layer of epithelial cells and
internally, a mass of elongated cells, the fibres. In the
equatorial region of the lens, the epithelial cells elongate
into fibres, DNA synthesis is arrested and high concentra-
tions of crystalline proteins accumulate (Piatigorsky, 1981).
The loss of organelles is extensive in these terminally
differentiating lens fibres. It affects the mitochondria
(Bassnett and Beebe, 1992), the endoplasmic reticulum
(Bassnett, 1995) and some components of the cytoskeleton
such as intermediate filaments and microtubules (Kuwabara
and Imaizumi 1974; Bradley et al, 1979; Vrensen et al,
1991; Sandilands et al, 1995). One of the most striking
features is nuclear degeneration, first described by Modak
(Modak et al, 1969; Modak and Perdue, 1970) that mimics
nuclear oligonucleosomal degradation (Appleby and
Modak, 1977), often described in apoptosis (Wyllie, 1980;
Wyllie et al, 1980). Despite these changes, the anucleate
fibre cells remain within the lens throughout the life span of
the individual.

Unlike apoptotic cells which die randomly, the fibre cells
differentiate, following a highly ordered pattern of temporal
progression. This allows the study of nuclear fate and
DNase activation (Counis et al, 1989a). Microdissection of
an embryonic or post-hatch chicken lens separates the
nucleated, undifferentiated epithelial cells attached to the
capsule from the underlying postmitotic, differentiated fibre
cells. Thus, cells from the same lineage, yet differing in
metabolism and differentiation state can be compared.

Modi®cation of lens nuclei during terminal
differentiation

Lens fibre differentiation from epithelia to fibre cells exhibits a
remarkable change in nuclear shape and morphology (Figure
2A ± D). Epithelial nuclei (Figure 2A) and outer fibre nuclei are
slightly round, then, as they mature, the nuclei elongate
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(Figure 2B and C) and shrink to a globular and highly
condensed shape (Figure 2D) (Sanwal et al, 1986). In 1970,
Modak and Perdue demonstrated by Feulgen and UV

microspectrophotometric analysis the loss of DNA from the
central and pycnotic fibre cell population. The nuclei from
these cells contain amounts of DNA equivalent to the 1C
value, while that of epithelial and annular pad cell populations
range between 2 ± 4c. We have confirmed this result
(Yamamoto et al, 1990) using microfluorometry with Hoechst
33258 fluorochrome, in the presence of NaCl to increase
accessibility of DNA to dye. We have shown a decrease in the
amount of DNA in lens fibre nuclei during embryonic and
postnatal development not observed in epithelial cell nuclei. In
the nuclei of mouse central lens fibres, Vrensen et al (1991)
describe an accumulation of osmiophilic or dense bodies in
the nucleoplasm. These appear to be extruded into the
cytoplasm and then the extracellular space. This material
could represent fragments of chromatin or RNP particles as
Sanwal et al (1986) observed earlier.

Cleavage of the chromatin may be modulated by the
structure of DNA itself, affected by the nuclear protein
environment. Among the different proteins implicated in
chromatin stability, histone H1 plays a fundamental role at
the linker of the nucleosome and in compacting
polynucleosome chains into higher-order structures.
HMG-14 nuclear protein has different DNA binding
domains and shows affinity for DNA within the nucleoso-
mal core (Trieschmann et al, 1995; Lovell-Badge, 1995).
Thus with specific antibodies raised against histone H1
and HMG-14, we studied the loss of both nuclear proteins
during lens cell development and differentiation with the
idea that the linker protein would be lost first and this,
would increase DNase efficacy. Curiously, HMB-14 is lost
quite early during embryonic development (Table 1;
Figures 3 and 4). HMG-14 is observed in all lens nuclei
at 11 day of embryonic development, E11 (Figure 3), yet
is completely absent in central round nuclei at E18 and at
older stages (Figure 4). Histone H1 is conserved, and can
still be observed at 11 day post-hatching but is
completely absent 7 days later (Table 1). Histone H1
belongs, in fact, to a family of proteins that can be
resolved into different subfractions. The histone variant
H1-2 (Table 1) is not observed in embryonic fibres though
it is seen in epithelial cells at the same age (Roche et al,
1992). These results may indicate that DNA is depleted of
protective proteins during lens fibre differentiation, a
feature which may favour the actions of endonucleases.

Figure 1 Embryonic chick lens central section at E18 stained with 1%
toluidine blue (625) showing Ep: epithelia. AP: annular pad, OF: outer fiber
cells with elongated nuclei. IF: inner fiber cells with round nuclei

Figure 2 (A, B, C and D) transmission electron microscopy of nuclei from
embryonic chick lens cells. Equatorial epithelial nuclei at E11 (A). Outer fibre
nuclei at E11 (B) and E18 (C). Central fibre nuclei at E18 (D) (Sanwal et al,
1986)

Table 1 Nuclear proteins of lens ®bre chromatin

HMG 14 (1) Histone H1 (1)

Stages OE CR OE CR Histone (2)

in days nuclei nuclei H1-1 H1-2

E 6
E 11
E 14
E 18
PH 4
PH 11
PH 18
PH 32

++
++
nd
++
++
++
++
++

no CR
++
nd
±
±
±
±
±

nd
++
nd
++
nd
++
++
nd

nd
+
nd
+
nd
+
±

nd

nd
+
+
+
nd
nd
nd
nd

nd
±
±
±

nd
nd
nd
nd

OE: outer elongated nuclei; CR: central round nuclei; E: embryonic stage; PH: post hatch stage. (1) Results obtained by immuno¯uorescence with polyclonal antibodies
directed against HMG 14 and Histone H 1. (2) PAGE analysis revealed by Coomassie, autoradiography and Western blot (Roche et al., 1992). nd: not determined
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Nevertheless, the data are not sufficiently definitive to
state whether the protein depletion precedes or parallels
DNA degradation.

DNA cleavage

Non-random DNA degradation occurs in terminally differen-
tiating lens cells; fragment size has been determined by
sucrose gradient analysis or agarose gel electrophoresis.
DNA ladders derive from large fragments of DNA, coming
themselves from high molecular weight DNA. In a healthy lens
epithelial cell, the DNA has a high molecular weight of 4165
S and sediments to the bottom of an alkaline sucrose gradient
as a homogenous population (Counis et al, 1977). As
differentiation progresses, it appears in the middle region of
the same gradient, a polydisperse DNA population with an
average molecular weight of 64 S. This last population is also
observed when lens cells are X-irradiated, and corresponds to
the high molecular weight DNA populations observed during
apoptosis resolved by pulse field gel analysis (Cain et al,
1994). The same specific sites of DNA cleavage were
detected as in apoptotic cells.

From an historical point of view, DNA degradation in
fibre cells was first studied in vitro using isolated nuclei. In
1977, Appleby and Modak showed that the cells located in
the central regions of the lens contained DNA with an
oligonucleosome banding pattern when analyzed in neutral
agarose gels. This is detected at E15 and later stages. We
have recorded a similar pattern (Muel et al, 1986) in
isolated fibre cell nuclei, present here at E11 and E18
(Figure 5). DNA cleavage of these nuclei, incubated for

Figure 3 Indirect immunofluorescence of E11 lens sections incubated with a polyclonal antibody against HMG14. (A) annular pad and outer fibres (616). (B) and
(C) central fibres with elongated and round nuclei (616). B corresponding phase contrast to C. (D, E, F) higher magnification (640) of insets from A (D and E) and
B, C (F): (D) annular pad, (E) outer fibres and (F) central fibres

Figure 4 E6 (A, B), E18 (C, D) and 4 day post hatch lens (E, F) sections
incubated with a polyclonal antibody against HMG14 showing central,
elongated and round fibre nuclei (640). Indirect immunofluorescence (A, C,
E) and corresponding phase contrast (B, D, F). Arrows show the same group
of cells in each pair of pictures
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different times in 10 mM Tris HCl, pH 7.4 containing 0.34 M
sucrose, 15 mM 2-mercaptoethanol and 0.05 mM PMSF, is
also visualized in neutral agarose gels. An oligonucleoso-
mal ladder is only recorded with lens fibre chromatin; this
DNA cleavage is first visible at E11 and at subsequent
stages.

As early as the late 1970s, it was apparent to us that the
pattern of DNA cleavage was progressive, with a multi-step
mechanism, from monodisperse, high molecular weight
DNA to a polydisperse DNA population (Counis et al,
1977). Only a fraction of the total DNA was cleaved into
oligonucleosomal fragments that characterise the DNA
ladder. The accumulation of DNA strand breaks could be
the result of either an increase in DNase activity or of an
impairment in DNA repair. It is probable that both
processes play an active part in the genome loss. To this
end, we have shown a gradual decrease of the DNA
synthesising enzymes. At E10, the DNA polymerase a
activity is lower in chick lens fibres than in epithelial cells. In
14.5 month old chick fibres, there is a total disappearance
of DNA polymerases (a and b) and DNA ligases (Counis et
al, 1981). This loss of polymerases may be more likely
related to decreased cell cycle traverse. The typical DNA
cleavage frequently observed in many examples of
programmed cell death has led to the hypothesis that
there is also present an active endodeoxyribonuclease
capable of producing double stranded breaks (DSB) in the
DNA of differentiating lens fibre nuclei.

Endodeoxyribonuclease activity in lens
®bre cells

There are several arguments that suggest the existence of an
endonuclease activity in lens fibre cells. Oligonucleosomes
are only observed in fibre nuclei (Figure 5A and B) incubated
in neutral buffer with no exogenously added cations. In the
same conditions, no nucleosomal ladder is observed in
epithelial cells. This results in DSB suggesting the presence

of a nuclease (Appleby and Modak, 1977; Muel et al, 1986).
However, it has also been demonstrated that oligonucleoso-
mal ladder formation is strictly dependent on the presence of
cations. Increasing amounts of EDTA or EGTA prevent
nucleosomal formation. This nuclease activity cleaves
completely, after a lag of 4 h, several genes such as a
crystallin, b tubulin and vimentin (detectable in nuclei, at E11,
by Southern blot (Muel et al, 1989)). A nuclear or cytoplasmic
extract from lens fibres contains a nuclease, the activity of
which is capable of cleaving a supercoiled PM2 DNA (Counis
et al, 1986). This endonuclease activity increases in the
nuclear fraction from E15 to E18, leading to a decrease of the
cytoplasm/nuclear ratio from 100 to 16.

However, in epithelial cells with an intact nucleus, there
is also an endonuclease activity capable of cleaving a
supercoiled PM2 DNA. This activity is present in the
cytoplasm at E15 and E18 but is always higher in fibres
(Counis et al, 1986). In epithelial nuclei incubated as
above, no oligonucleosome formation can be seen, just a
smear of high molecular weight DNA appears after
incubation (Muel et al, 1986). Evidence of nucleosome
distribution, however, has been seen in epithelial nuclei. If
epithelial lens cells are irradiated with X-rays, and the
nuclei prepared as above, it is then possible to observe
faint oligonucleosome formation after a delay of 20 h
(Trevithick et al, 1987).

In conclusion, differentiating fibre cells contain endo-
deoxyribonuclease(s) capable of cleaving supercoiled DNA
substrate and fibre chromatin into nucleosomal ladders.
Epithelial cell nuclei also contain endonuclease activity
which can be activated. However, we do not yet know if
both compartments share the same nuclease molecules.

Classi®cation of lens DNases

DNase activities may be classified into three main groups.
The first group is the class of DNase I-like molecules, with an
absolute Ca2+, Mg2+-dependence. The second group
includes the acidic or DNase II-like nucleases, with no cation
dependence. The third group contains DNases with
dependence on only one cation, such as Mg2+, Mn2+ or Ca2+.

The Ca2+, Mg2+-dependent DNases

The first group, of which the best known enzyme is DNase I,
comprises all Ca2+, Mg2+-dependent enzymes. DNase I has
been reviewed by Moore (1981). First purified from bovine
pancreas, this 30 kDa polypeptide has a Ca2+, Mg2+-
dependence with an optimal activity at neutral pH. It has a
natural and specific inhibitor, G-actin, and is also inhibited by
zinc and aurintricarboxylic acid (ATA). DNase I cleaves DNA
by producing single (SSB) and double (DSB) strand breaks
with free 3' OH ends (Mannherz, 1992). It has been cloned
and sequenced from different species: rat (Polzar and
Mannherz, 1991), bovine Worrall and Connolly, 1990) and
human (Shak et al, 1990). It is the best characterised
eukaryotic nuclease.

Hewish and Burgoyne (1973) first demonstrated that
chromatin from liver nuclei could be autodigested, in the
presence of divalent cations (Ca2+, Mg2+), into regular sub-
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Figure 5 Electrophoretic analysis on 1% neutral agarose gel of oligonucleo-
somes produced by autodigestion of lens fibre nuclei (f) at E11 (a) and E18 (b).
Compare the f lanes with e lanes corresponding to epithelial cell nuclei (Muel
et al, 1986). Nuclei were incubated during 0, 1, 2, 4, 6 and 20 h in 10 mM Tris-
HCl (pH 7.4), 0.34 M sucrose, 0.05 mM PMSF and 15 mM 2-mercaptoethanol.
Markers (m): f6174 RF-DNA HaeIII digests (1352, 1078, 872, 603, 311, 271,
234, 194 bp)
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structures which appear to be multiples of the smallest size
unit. Since then, Wyllie (1980) and others, including
ourselves have studied Ca2+, Mg2+-dependent DNase,
suggesting that it plays a role in oligonucleosomal ladder
formation. Wyllie and coworkers isolated this activity from
thymocytes as a protein of 110 ± 130 kDa, which they
reported to be closely related to one subunit of topoisome-
rase II (Arends et al, 1990; Arends and Wyllie, 1991). Lack
(1981) identified in nuclease activity gels or zymograms, a
30 kDa protein, whose activity was Ca2+, Mg2+-dependent,
in tissues such as parotid and submaxillary salivary glands
and small intestine, lymph node, kidney, heart, prostate
gland and seminal vesicles. Ucker et al (1992) using the
same technique, showed a doublet at 40 kDa, with
nuclease dependent Ca2+ and Mg2+ activity, in NIH3T3
fibroblast nuclei and in (SV40)-transformed fibroblast nuclei.
Gaido and Cidlowski (1991) have isolated an 18 kDa
nuclease from rat thymus which can also be classified as
belonging to the DNase I family. Recently, Pandey et al
(1997) purified a novel 97 kDa endonuclease.

In lens fibre cell extracts, neutral Ca2+, Mg2+-dependent
nuclease activity was measured (Figure 6A) by a specific
assay capable of discriminating the Ca2+, Mg2+-nucleases
from acidic, non-cationic DNases (Torriglia et al, 1995).
This bi-cationic activity represented in fact several DNase
activities. After isoelectrofocusing electrophoresis followed
by an activity transfer to an agarose gel containing DNA,
two polypeptides with an acidic charge (pI 5.2 and 5.3)
displayed this activity. By comparison, commercial DNase I
has a pI of 5.3 (Counis et al, 1989b). Using a gel activity
technique (i.e. Laemmli gels containing DNA), two Ca2+,
Mg2+-dependent activities corresponding to 30 and 60 kDa
polypeptides were observed (Figure 6B) in a Tris-SDS lens
fibre extract (Arruti et al, 1995). These cationic activities,
noted in both chicken embryonic lens fibre cells and
completely anucleate fibre cells (hen of 1.5 years old),
are dependent strictly on Ca2+ and Mg2+ and inhibited by a
specific inhibitor of DNase I, G-actin (Arruti et al, 1995). It
has been hypothesised that these cationic DNase activities
accumulating in lens fibre cells at an older stage could
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Figure 6 DNase content in chick lens fibre cells. (A): DNase activity assay, depicting the presence of neutral Ca2+, Mg2+ (dark bar) and acidic-noncationic (white
bar) DNase activities at E18 (Torriglia et al, 1995). (B): Non radioactive activity gel showing cationic (Ca2+, Mg2+) DNase activities in outer (1) and central (2) 2
month old lens fibre extracts (Arruti et al, 1995). E18 lens fibre DNase I (C) and DNase II (D) detected by Western blot with specific anti-DNases. Control DNase I
(3). DNase I (4) and DNase II (5) detected in a E18 fibre extract. Control DNase II (6) (Torriglia et al, 1995)
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have another function as nuclei have long disappeared.
They may be linked to a crystallin, via G-actin, and play a
role in ultrastructural organisation of the lens fibre itself
(Gopalakrishnan and Takemoto, 1992).

These DNase I-like enzymes were further immuno
characterised using an anti-DNase I raised against bovine
pancreatic DNase I. This antibody inhibits DNase I activity
in vitro (Torriglia et al, 1995). A single band of 32 kDa was
detected by Western blot (Figure 6C, lane 4). When
considering the immunochemistry data, DNase I (Figure 7,
panel 2) was found in the nuclei of E18 fibre cells
(corresponding nuclear staining DAPI, Figure 7, panel 1).

In epithelial cells, we have observed a Ca2+, Mg2+-
dependent nuclease activity which was reduced compared
to that in fibres, when expressed per cell number. Three
main polypeptides were labelled with an antibody directed
against DNase I, in Western blot (60, 32 and 18 kDa)
(Torriglia et al, 1995). These DNase I-like molecules were
found mainly in the nuclei (Figure 7, panel 4; corresponding
nuclear staining DAPI, panel 3) of epithelial cells in lens
sections, when observed by immunohistochemistry (Torri-
glia et al, 1995).

Different techniques suggest that several Ca2+, Mg2+-
dependent nucleases exist in lens fibre cells, characterised
either by their pI or by their molecular weight as in apoptotic
cells (30 kDa DNase I, NUC 18 and the new 97 kDa). If we
consider that the active DNase I is the 30 kDa polypeptide,
other Ca2+, Mg2+ nuclease activities exist, probably not
related to DNase I. It is noteworthy that all these
polypeptides require millimolar concentrations of Ca2+ and
Mg2+ when assayed in vitro, but the intracellular Ca2+ level
is in the nanomolar range. This is well below the

concentration required to activate the enzymes in vitro
(Barry and Eastman, 1992).

Non-cationic DNases

The second group of DNases corresponds to DNase II-like
activity. DNase II has been described by Bernardi (1971) and
Liao et al (1989). Initially purified from porcine spleen, it has a
molecular weight of 40 ± 46 kDa, and is composed of two
subunits of 35 and 10 kDa. DNase II cleaves DNA in sodium
acetate buffer (150 mM) and in the presence of EDTA
(10 mM), with an optimal acidic pH (4.6 ± 5), produces DSB
and SSB with 3' phosphate ends. Having been neither
sequenced nor cloned; it is not as well known as DNase I
and few authors have studied this molecule. Yasuda et al
(1992) purified a 32 kDa protein with DNase II activity. This
activity can be detected in many human tissues including liver,
kidney, spleen, lung, heart, pancreas, thymus and salivary
fluid suggesting an ubiquitous nuclease.

In lens fibre cells, the assay discriminating the acidic (pH
5.5), non-cationic nuclease activity from cationic and
neutral DNase has shown an acidic nuclease activity
(Figure 6A) in fibre cells (Torriglia et al, 1995). We have
not been able to use the denaturating gel activity technique
to detect any DNase II activity in tissues or any purified
commercial preparations even if the reducing agent is
omitted. This differs from the findings of Mezzina (1989) in
lymphocytes and Pandey et al (1997) in rat hepatoma cells.
We have prepared a polyclonal antibody against DNase II
(27 kDa from Worthington) having a high titre. It does not
cross-react with DNase I and is able to inhibit DNase II
activity in vitro (Torriglia et al, 1995). In fibre cells, DNase II

2176 —
1766 —
1200 —
1000 —

A B

1 2 3 4 5 6 7 8 910

Figure 7 Localisation and function of cation dependent (Ca2+, Mg2+) and acidic, non cationic DNases (Torriglia et al, 1995). Nuclear localisation of DNase I in
lens outer fibre nuclei (panel 2) or in epithelial nuclei (panel 4). Nuclear Dapi stain of the same section (panels 1 and 3). Nuclear localisation of DNase II in lens
outer fibre nuclei (panel 6) and cytoplasmic localisation in epithelial cells (panel 8). Nuclear Dapi stain of the same section (panels 5 and 7). Effect of the anti-
DNase I and anti-DNase II antibodies on DNA cleavage: 106 lens epithelial (A) or fibre (B) nuclei were incubated 6 h in neutral cationic or in acidic, non-cationic
medium in absence or in presence of an anti-DNase I or DNase II antibody. Arrow indicate the sample well. (A) Acidic non-cationic DNase nuclease activity in E18
epithelial cells (lane 3) is not inhibited by anti-DNase II (lane 4) nor is cationic nuclease activity in same tissue (lane 1) by anti-DNase I (lane 2). (B) Acidic non
cationic DNase activity in E18 fibre nuclei (lane 8) is inhibited by anti-DNase II antibody (lanes 9 ± 10) while cationic nuclease activity in E18 fibre nuclei (lane 5) is
not inhibited by anti-DNase I antibody (lanes 6 ± 7)
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antibody recognises three major bands (60, 23 and 18 kDa)
which are detected, at least for two of them (60 and
23 kDa) only in these differentiating cells as compared to
epithelial cells (Figure 6D, lane 5). Immunolocalization
(Figure 7, panel 6; corresponding nuclear staining DAPI,
panel 5) shows the presence of DNase II, highly concen-
trated, in all populations of fibre nuclei programmed to
degenerate, although the DNase II is known to be a
lysosomal enzyme (Liao et al. 1989). Other authors have
also found this enzyme in nuclei (Slor and Lev, 1971).

In non-differentiating lens epithelial cells, there is also
some acidic and non-cationic nuclease activity, to a lesser
extent than in differentiating fibre cells. Western blotting
shows two immunoreactive bands of 100 and 18 kDa which
are located in cytoplasm (Figure 7, panel 8; corresponding
nuclear staining DAPI, panel 7) when recorded by
immunofluorescence (Torriglia et al, 1995). The DNase II
immunoreactivity is also restricted to the basal membrane.

These new results are of interest in studies on DNase II.
The appearance of several DNase II bands recognised by
the specific DNase II antibody suggests that DNase II may
have HMW precursors, or may be linked with regulatory
proteins.

DNases with a single cation requirement

The most important among these enzymes are probably the
Mg2+-dependent enzymes, with a key role in DNA repair
(Wallace, 1988). Basnak'yan et al (1989) have also described
a Mn2+-dependent DNase (30 kDa) fractionated from rat liver
chromatin, and Nikonova et al (1982) a Ca2+-dependent
DNase in rat thymocytes. Recently, a calcium-dependent
15 kDa endonuclease has been described in rat renal
proximal tubules subjected to hypoxia/reoxygenation injury
(Ueda et al, 1995). We have also observed in lens fibre cell
nuclei, DNase activity dependent on one cation, either Ca2+ or
Mg2+ (Muel et al, 1986). Lens fibre nuclei incubated 4 h in
neutral Tris HCl medium, containing EDTA, EGTA and either
Ca2+ or Mg2+, show a smear of DNA degradation by
electrophoresis, indicating nuclear activation of one cation
dependent DNases.

Participation of these different nuclease
activities in DNA cleavage

The mechanism of DNA degradation and chromatin con-
densation is not well understood and the existence of several
endonucleases has been postulated: DNase I (Peitsch et al,
1994). DNase II (Barry and Eastman 1992, 1993; Eastman,
1994), NUC 18 identified as cyclophilin (Gaido and Cidlowski,
1991; Montague et al, 1994) and the 97 kDa endonuclease
(Pandey et al, 1997).

In differentiating lens fibre cells where nuclei are
physiologically programmed to disappear, we have ob-
served all the types of DNases described in the literature.
In an attempt to identify which endonucleases may be
responsible for the various levels of endogenous DNA
fragmentation, several studies were performed.

Using in situ nick translation reaction, we showed in
chick lens fibre cells (E 18, Figure 8A) (Chaudun et al,

1994) that there was no accumulation of SSB with free 3'
OH ends on DNA (Figure 8B), as would be expected if a
DNase of type I was responsible for DNA degradation
(Figure 8C). In addition, Morgenbesser et al (1994) and
Robinson et al (1995), recorded no DNA labelling by the
TUNEL method, indicating that an addition to SSB, no DSB
with free 3' OH were obtained suggesting a modest
participation of DNase I-like nuclease. These results have
led to the hypothesis that another DNase may be
responsible for DNA cleavage.

When nuclei of epithelial cells are isolated (Figure 7A) in
acidic medium (lanes 3 ± 4), or in the presence of Ca2+, Mg2+

(lanes 1 ± 2), a mild DNA degradation is seen. This cleavage
is inhibited neither by anti-DNase II (lane 4) nor by anti
DNase I (lane 2). In contrast, when fibre nuclei are
incubated in an acidic medium (Figure 7B, lanes 8 ± 10),
the medium devised for DNase II activity, there is strong
DNA degradation (lane 8) that can be only blocked by the
antibody directed against DNase II (Figure 7B, lanes 9 ± 10).

Thus, these results strongly implicate DNase II in this
process. We believe that DNases of type II could be
responsible for the early events of DNA cleavage during
this physiological process, since no nucleosomal ladder is
seen. A Mg2+-dependent endonuclease has been observed
to cleave the high molecular weight DNA in other tissues
e.g. liver and thymus (Cain et al, 1994; Cohen et al, 1994;
Walker and Sikorska, 1994). This is not in contradiction
with our results, since DNase II has been described to be
active in the presence of Mg2+ (Bernardi and Sadron,
1964).

This type II nuclease from lens fibres is probably related
to the deoxyribonuclease II described by Barry and
Eastman (1993) in chinese hamster ovary cells. However,
we have no reason to think that it may be a DNase

Figure 8 Histological staining and nick translation (NT) on sections of
embryonic chick lens at E18. (A) (650) Embryonic chick lens section stained
with hematoxylin and eosin at E18 showing the different cell types: epithelia
(Ep), annular pad (AP), outer fibre cells (OF) and inner fibre cells (IF). (B and
C) (695). Autoradiographs of sections fixed with methanol/acetic acid before
NT in the absence (B) or in the presence (C) of DNase I. In (B), the cells show
no single-strand breaks with 3' OH termini (Chaudun et al, 1994)
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producing nucleosomes such as the DNase I reported by
Peitsch et al (1994) or the 97 kDa nuclease from Pandey et
al (1997). The DNase I is present in lens fibre nuclei but
during in vitro nuclei incubation, this nuclease appears to
have weak activity, since the Ca2+, Mg2+-dependent activity
recorded (Figure 7B, lane 5) is not inhibited by a specific
inhibitory antibody directed against DNase I (lanes 6 ± 7;
Torriglia et al, 1995).

In addition, we have shown the presence of different
nuclease polypeptides active in Ca2+, Mg2+ medium. These
results raise the possibility that there must exist another
Ca2+, Mg2+-dependent DNase activity different from
DNase I which may be implicated in the process of
nucleosomal formation.

These results suggest that at least two different enzymes
may be responsible for complete DNA degradation. This is
in good agreement with the two activities described by
Walker and Sikorska (1994) in the process of apoptosis,
indicating a general pathway of concerted activation of
DNases. We can then consider that among the two Ca2+,
Mg2+-dependent fibre nuclease activities we have noted,
one may play a role in nucleosomal formation. This DNase
could be from the DNase I class, as identified by its Ca2+,
Mg2+-dependence, but may not be related to DNase I. In
addition, the Ca2+, Mg2+-dependent NUC 18 described by
Cidlowski and coworkers (Gaido and Cidlowski, 1991;
Montague et al, 1994) may be involved as well as a
hypotonic-extracted 97 kDa nuclease recorded by Pandey
et al (1994, 1997). This apparent diversity of DNase
molecules suggests different signalling pathways as
Segal-Bendirdjan and Jacquemin-Sablon (1995) proposed.

Modulators of nuclear degeneration while
®bre cell cytoplasm remain all along the
life-span

We must remember that lens fibre cells lose their organelles,
while the cells are still present in the organ, throughout their
life-span. Thus some controls must exist in these differentiat-
ing cells that do not appear in cells committed to die.

Several factors can delay DNA cleavage. For example,
Zn2+ is capable of blocking all DNases, including DNase II
(Torriglia et al, 1997). Culture of E11 chick lenses in a
medium lacking tryptophan delays DNA degradation
(Counis et al, 1984), perhaps by inhibiting DNase
synthesis or precursors of the DNA breakage cascade.
Alternatively, acidic pH can accelerate the phenomenon of
genomic cleavage (Barry and Eastman, 1992, 1993;
Gottlieb et al, 1995). As fibre cells are acidophilic (Zwaan
and Williams, 1968), this state could contribute to DNase II
activation. It is important to note that even if DNase II has
an optimal pH of activity in the acidic range, it is still able to
degrade DNA at a neutral pH (Figure 9). Mitochondria may
also induce DNA disappearance. In lens fibre cells,
mitochondria are lost coincidentally with nuclei (Bassnett
and Beebe, 1992) just before DNA degradation (Bassnett
and Mataic, 1997) and could contribute, by liberating
factors such as apoptotic inducing factor (AIF) or
cytochrome C capable of inducing DNA breakdown
(Kroemer et al, 1997).

In the lens, there are various growth factors and/or
oncogenes that can modulate the whole process of
differentiation. Some of them may maintain cell cytoplasm
survival while others may act to delete organelles. We have
found fibroblast growth factors (FGF 1 and FGF 2) in
embryonic chick retina at E11 and E18 (Mascarelli et al,
1987) and hypothesised, as have others, (Lovicu et al,
1995) that exogenous FGFs may induce lens differentia-
tion. McAvoy and Chamberlain (1989) have shown that
exogenous FGF induces lens epithelial cells, in explant
culture, to proliferate, migrate and differentiate into fibre
cells in a progressive concentration-dependent manner. We
have observed during lens development an accumulation of
FGF 1 in embryonic chick fibre cells, particularly in outer
fibre cells (expressed as ng/108 cells; Table 2). The
distribution of FGF 1 as well as the corresponding mRNA
(Philippe et al, 1996) can thus be correlated with the
pattern of differentiation in the lens, the greatest amount
being concentrated in the nuclei of the outer fibres, a
pattern not seen with FGF 2 (Cirillo et al, 1990). Lens fibre
cells could be dependent on FGFs for their survival and
differentiation (Chow et al, 1995) via either their receptor
(Robinson et al, 1995; De longh et al, 1996) or an autocrine
loop, since FGF 1 has no signal peptide (Renaud et al,
1996).

Lens cell differentiation as a model for
apoptotic events

DNA degradation during fibre cell differentiation bears a
number of similarities to apoptotic cells. Recently, Zelenka et
al (1996) and Lang (1997) have suggested that lens cell
terminal differentiation may be a special adaptation of the
apoptotic process. Wride (1996) in another context, highlights
the possible role of TNFa in loss of the lens cell nucleus and
the role of apoptotic molecules e.g. ICE, bax and bcl2,
suggesting a strong link between both processes. On the
other hand Bassnett and Mataic (1997), using various

Figure 9 DNase II activity in acidic and neutral pH. 100 ng of DNase II
(Worthington) were incubated with 1 mg of 3H-labelled DNA for 30 min at 378C,
as described (Torriglia et al, 1995), in the presence of 10 mM Tris, 10 mM
EDTA, pH 5.5 (grey column) or in the presence of 10 mM Tris, 1 mM EDTA, pH
7.4 (hatched column)
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morphological and chronological criteria believe that the
process of lens cell differentiation is distinct from apoptosis.
One of their major arguments is that in lens fibre cells, the
organelles disappear 2 ± 3 days before DNA fragmentation
while in apoptotic cells, including lens epithelial cells (Li et al,
1995), the organelles are still present after DNA has been
degraded. In addition, they point out that there is no
membrane blebbing or formation of apoptotic bodies. Never-
theless, evidence of: the accumulation of G1 cyclins without
initiating DNA synthesis; the expression of p34cdc2 in fibre
cells (Zelenka, 1996); the induction of apoptosis in lenses
from p537/7 mice in which the Rb function is inactivating by
the HPV E7 oncoprotein at the time that nuclear degeneration
begins (Pan and Griep, 1995), and the degradation pattern of
DNA in fibre cells, support the idea of a biochemical link
between apoptosis and loss of the fibre cell nucleus. This idea
is also supported by recent work. Transgenic mice were
generated that overexpress bcl-2 in a lens specific fashion.
Overexpression of bcl-2 was sufficient to interfere with normal
lens cell differentiation. A cell disorganisation is seen, as well
as inhibition of loss of the lens cell nucleus (Fromm and
Overbeek, 1997).

Recent evidence has demonstrated that mitochondria
are required for apoptosis, probably through release of
cytochrome C (Kroemer et al, 1997; Yang et al, 1997;
Kluck et al, 1997). The resulting activation of caspases
degrades many proteins in both the cytoplasm and the
nucleus. If caspases are activated in the lens, it would
appear that terminally differentiated cells would have no
chance of long term survival. Hence, by deleting the
mitochondria before the nuclei instead of afterwards, the
cells are able to survive. This might be the difference
between differentiation and apoptosis in the lens. This
would also suggest that in the lens a different pathway is
required to activate nucleases because the cells now lack
mitochondria.

Conclusion

In conclusion, the lens is an interesting model for studying
patterns of nuclear degeneration and DNA cleavage. Its fibre
cells contain or receive the information which leads to their
nuclear disappearance, while the cytoplasm is conserved
throughout the life-span. It is, thus, a differentiating system

which is interesting to compare with a true apoptotic one. In
1977, we had shown that DNA was broken into multi-step
fractions, i.e. high molecular and oligonucleosomal DNA
fragments. The chromatin was condensed in the last steps
before nuclear disappearance, mimicking apoptotic nuclei.
Lens fibre nuclei, as all nuclei, contain several kinds of
DNases and the understanding of their presence and function
is highly complex. The activity of these nucleases must be
partially blocked, implicating subtle regulation, probably via
proteases, but no studies have been done on these
molecules.

Among several Ca2+, Mg2+-dependent DNases including
DNase I, mono-cationic (Ca2+ or Mg2+) nucleases and non-
cationic DNase (DNase II), we have been able to strongly
implicate DNase II in this process. DNase II regulation is
poorly understood. It is supposedly a lysosomal enzyme,
while in our model, it has been found located in the nuclei
of these differentiating cells. It is active in fibre nuclei when
incubated in acidic buffer, a medium devised only for non-
cationic DNase. Under these conditions, only the anti-
DNase II antibody can inhibit the acidic DNA degradation. If
DNase II seems very important, we cannot exclude a
complementary role for DNase I, located in all fibre nuclei.
However, it is probably a minor one as the DNA
degradation observed in a Ca2+, Mg2+ buffer, specific for
cationic DNases cannot be inhibited by anti-DNase I. Thus,
we presume that another DNase of the Ca2+, Mg2+ class
may be an additional factor in this complex process. This
regulation may also involve multiple additional factors
including post-translational modifications of the DNases,
pH, mitochondrial release factors, oncogenes and/or trophic
factors including FGF 1.
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Table 2 Amount of FGF1 in lens cells during differentiation

Epithelial FGF 1 Epithelial FGF 1 Fibre FGF 1 Fibre FGF 1

ng/ml protein ng/ml/108 cells ng/mg protein ng/ml/108 cells

E 11 total tissue
E 18 total tissue

outer ®ber
inner ®ber

PH 1 d total tissue
outer ®ber
inner ®ber

PH 3 m total tissue
outer F
inner F

2.4+0.4
202.6+62.4

208.0+55.1

89.6+28.7

5.1+0.6
31.1+5

0.44+0.03
65.6+5.7

101.9
24.6

58.5+0.7
71.6
29.4

27.2+10.9
24.1
5.5

11.9+0.9
201.0+27.2

E: embryonic stage. PH: post hatched stage. d: day, m: month
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