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Apoptosis and the cell cycle: the p53 connection
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The p53 gene in its wild-type (wt) form is defined as a tumor
suppressor gene. Indeed, mutations in p53 were found to
occur in high frequency in most of the common types of
human cancer (Hollstein et al, 1991). Stabilization and
activation of p53 following a variety of signals, such as
genotoxic insults, result in the execution of its biological
activities. The best characterized activities of p53 are the
induction of a cell growth arrest or of apoptosis.

Induction of a growth arrest by p53 was shown to
depend on its ability to act as a sequence-specific
transcriptional activator (Crook et al, 1994, Pietenpol et
al, 1994). An important target gene in the growth arrest
pathway is WAF1/CIP1 (El-Deiry et al, 1993; Harper et al,
1993). The protein product of this gene, p21, binds to
cyclin-dependent kinases and inhibit their action, thereby
blocking cell proliferation (Xiong et al, 1993). Mice lacking
p21 were shown to be defective in the G1 checkpoint
control (Brugarolas et al, 1995; Deng et al, 1995). However,
the G1 checkpoint was only partially impaired, indicating
that p21 does not play an exclusive role in this pathway.

The mechanism of p53-induced apoptosis is still not well
characterized, and it appears that p53 may mediate
apoptosis both through transcriptional activation-depen-
dent and independent pathways.

Whether a cell would undergo growth arrest or apoptosis
following p53 activation appears to depend on a variety of
factors, such as environmental conditions and the cell type.
As reviewed by Kasten and Giordano 1998 (see this issue),
the loss of the tumor suppressor pRb function may
contribute to p53-induced apoptosis: the activity of pRb
and/or other pRb-related proteins was shown to be
necessary for the induction of a G1 arrest by p53 following
DNA damage (Demers et al, 1994; Hickman et al, 1994;
Slebos et al, 1994; White et al, 1994), and pRb may have a
protective effect on p53-induced apoptosis in some cells
(Qin et al, 1994; Haupt et al, 1995) but not in all systems
(Hsieh et al, 1997). In cells having a functional pRb,
induction of p21 would lead to inactivation of cyclin-
dependent kinases and therefore to inhibition of pRb
phosphorylation. The hypophosphorylated pRb retains
transcription factors of the E2F family, which are
necessary for the G1/S transition, thus imposing a p53-
induced G1 arrest. In the absence of functional pRb, p21
will still be induced by p53 activation but cells will be unable
to growth-arrest and may therefore be `forced' to die

through inappropriate cell proliferation signals by entering
into S phase (Kasten and Giordano, 1998, see this issue).
In this context, deregulated expression of E2F was shown
to induce p53-mediated apoptosis (Qin et al, 1994; Shan
and Lee 1994; Wu and Levine 1994; Almasan et al, 1995;
Logan et al, 1995). E2F1-DP1 complex was reported to
bind to and to induce p53, thereby overriding survival
factors to induce apoptosis (Hiebert et al, 1995; O'Connor
et al, 1995). Without both Rb and p53, E2F activation would
stimulate cell proliferation and permit tumor formation, as
was demonstrated by the development of retinal tumors in
HPV E7 transgenic mice (Howes et al, 1994; Pan and
Griep 1994). However, recent publications have demon-
strated that E2F-1-induced apoptosis does not require
transactivation and DNA synthesis and can occur in the
absence of p53 (Hsieh et al, 1997; Nip et al, 1997; Phillips
et al, 1997). Thus, the reported repression function of the
Rb-E2F-1 complex (Zacksenhaus et al, 1996) may play an
important role in regulation of apoptosis by these cell cycle
proteins. Interestingly, pRb cleavage following caspases
activation in several apoptotic pathways was observed
(Kasten and Giordano 1998, see this issue, and references
therein), suggesting that apoptosis may be incompatible
with functional Rb, and linking apoptosis to cell cycle.

Another link between cell death and regulation of cell
proliferation is the c-Myc proto-oncogene. c-Myc plays a
role as a positive regulator of cellular proliferation, but its
activation can also result in apoptosis under certain
environmental conditions such as serum deprivation or
hypoxia (Evan et al, 1992; Graeber et al, 1996). Several
studies have suggested a role for p53 in c-Myc-induced
apoptosis upon serum withdrawal in fibroblasts (Hermeking
and Eick, 1994; Wagner et al, 1994; Yu et al, 1997; Han et
al, 1997). Using Rat-1 fibroblasts expressing a conditional
c-Myc, Rupnow et al, 1998 (see this issue) demonstrate
that cells expressing antisense p53 are more resistant to c-
Myc-induced apoptosis under hypoxic or low serum
conditions. In this system, c-Myc activation also sensitized
Rat-1 cells to radiation-induced apoptosis, and there again
cells expressing antisense p53 were more resistant to
apoptosis induced by the combined effect of c-Myc
activation and g-irradiation. Thus, p53 appears to be an
important mediator of c-Myc-induced cell death under a
variety of environmental stress signals.

The cellular response to p53 activation may depend not
only on the cell type and factors such as Rb, as described
above, but also on the level of p53 expression. Thus, high
levels of p53 expression induced apoptosis while low levels
induced cell cycle arrest in Saos-2 and H1299 cells (Chen
et al, 1996). Using a similar approach of introducing a
tetracycline-regulated inducible p53 expression into a p53-
null cell line of small cell lung carcinoma (SCLC), Adachi et
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al, 1998 (see this issue) assessed the effect of the level of
p53 expression on these cells. Apoptosis was induced in
SCLC cells by high levels of p53 expression, while low
expression levels induced a G1 arrest. However, G1-
arrested cells underwent apoptosis after further cultivation.
In agreement with previous reports in other cell types, p21
was induced by low and high levels of expression of p53
but it does not appear to play a role in p53-induced
apoptosis (reviewed by Yonish-Rouach, 1996). Indeed,
expression of exogenous p21 induced G1 arrest but not
apoptosis in the SCLC cells. On the other hand, high levels
of p53 down-regulated Bcl-2 expression in SCLC cells
while Bax expression was not modified irrespective of p53
expression level. The authors suggest that p53-mediated
apoptosis and G1 arrest depend on the level of p53
expression in SCLC cells, and that the relative high
expression of Bax over low expression of Bcl-2 at high
level of p53 expression is involved in the induction of
apoptosis. It is interesting to note that there is no G1 arrest
at high level of p53 expression prior to the induction of
apoptosis and concomitantly with down-regulation of Bcl-2.
Recent data provided evidence that Bcl-2 is yet another link
between cell death and cell cycle regulation, since in
addition to its anti-apoptotic function it can also restrain cell
cycle entry (O'Reilly et al, 1996). Thus, the low expression
of Bcl-2 imposed by high level of p53 expression may play
a role in escaping a G1 arrest.

Finally, the importance of p53-mediated apoptosis is
demonstrated in an in vivo study by Reichel et al, 1998 (see
this issue). Previous experiments have shown that a
significant fraction of p53 null mice have developmental
abnormalities, including profound neural-tube defects
associated with overgrowth of neural tissue, and the
affected embryos frequently undergo resorption (Armstrong
et al, 1995; Sah et al, 1995). In the present study, Reichel et
al, have identified a role for p53-dependent apoptosis in the
regression of the hyaloid vasculature and tunica vasculosa
lentis, thus providing further evidence for the importance of
p53 in normal development. This study also demonstrates
for the first time a role for p53 in postnatal development in
remodelling of the developing eye.
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