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Abstract
Apoptosis and necrosis are considered as conceptually
distinct forms of cell death. Nevertheless, there is increasing
evidence that classical apoptosis and necrosis represent only
the extreme ends of a wide range of possible morphological
andbiochemical deaths. The two classical types of demise can
occur simultaneously in tissues or cell cultures exposed to the
same stimulus, and often the intensity of the same initial insult
decides the prevalence of either apoptosis or necrosis. This
suggests that, while some early events may be common to
both types of cell death, a downstream controller may be
required to direct cells towards the organised execution of
apoptosis. We have recently shown that intracellular energy
levels and mitochondrial function are rapidly compromised in
necrosis, but not in apoptosis of neuronal cells. Then, we went
on to show that pre-emptying human T cells of ATP switches
the type of demise caused by two classic apoptotic triggers
(staurosporin and CD95 stimulation) from apoptosis to
necrosis. Conditions of controlled intracellular ATP depletion,
which was obtained by blocking mitochondrial and/or
glycolytic ATP generation, were used in combination with
repletion of the cytosolic ATP pool with glucose to redirect the
death program towards apoptosis or necrosis. At least two
distinct steps, the typical nuclear degradation, and the
expression of annexin V-recognisable determinants on the
cell surface require sufficient ATP generation. This suggests
thatsomeupstreamregulatorsof celldeathmaybecommonto
both types of cell demise, whereas yet unknown downstream
processes decide its shape and the implications for the
neighbouring tissue.
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Mitochondria and neuronal demise
Several neurodegenerative diseases are characterized by a
relentless neuronal demise. Cerebral ischemia or long-lasting

neurodegenerative conditions such as Alzheimer's disease
(AD), Parkinson's disease (PD), amyotrophic lateral sclerosis
(ALS), Huntington's disease (HD), AIDS-related dementia
and multiple sclerosis/experimental allergic encephalitis may
involve an increased rate of neuronal apoptosis (Bredesen,
1995). One common component in the pathogenesis of these
diseases may be excitotoxicity (Choi, 1988, 1992; Meldrum
and Garthwaite, 1990; Lipton and Rosenberg, 1994).
Generally, excitotoxicity is induced by conditions favouring
glutamate-accumulation in the extracellular space (Figure 1),
and it is enhanced by conditions (e.g. energy depletion) that
hinder cellular protective mechanisms (Choi, 1995; Novelli et
al, 1988). Typical conditions leading to increased extracellular
glutamate concentrations (Bullock et al, 1995; Rothman,
1984; Sandberg et al, 1986; Drejer et al, 1985; Beneviste et al,
1984) are depolarization of neurons, energy depletion due to
hypoglycaemia or hypoxia (Cheng and Mattson, 1991, 1992;
Cheng et al, 1994; Wieloch, 1985), exposure to nitric oxide
(NO) (Bonfoco et al, 1996; Leist et al, 1997a) or defects in the
glutamate reuptake systems (Rothstein et al, 1996). In
addition, it has recently become clear that concomitant
production of cytokines or other mediators can participate in
cerebral damage (Chao et al, 1995; Philippon et al, 1994;
Fassbender et al, 1994; Mitrovic et al, 1994).

Circumstantial evidence that mitochondria play important
roles in excitotoxicity and also in slowly developing
neurodegenerative disorders is abundant. Similar to other
neurodegenerative diseases, those that primarily affect
mitochondrial energy metabolism (i.e., mitochondrial en-
cephalopathies) feature delayed onset, slow progression,
decreased glucose metabolism and finally neuronal loss.
Diseases, which are associated with point mutations in
mitochondrial DNA seem to share some similarities with
AD, or PD, and point mutations in mitochondrial DNA have
occasionally been described in the latter diseases (Beal et
al, 1993; Abe et al, 1995). Finally, decline in the activity of
enzymes involved in the respiratory chain (e.g., complex I)
caused for example by MPP+ (Kass et al, 1988; Hartley et
al, 1994) and in pathological settings by nitrosative or
oxidative stress (Gross and Wolin, 1995) would favour free
radical generation, decreased Ca2+ buffering capacity and
loss of plasma membrane potential with sensitisation to
excitotoxicity (Coyle and Puttfarcken, 1993). This sequela
of events may underlie the pathogenesis of PD (Fahn and
Cohen, 1992).

In addition to possible pathogenic roles in the initial
development of slow neurodegenerative disorders, mito-
chondrial failure is a consequence of several types of
neuronal injury. Excessive glutamate release is a key event
in stroke, and circumstantial evidence suggests that
accumulation of this neurotransmitter at synaptic clefts
occurs also in several other neuropathological conditions.
The subsequent Ca2+ overload can elicit neurodisruption
directly (i.e. activation of proteases or lipases) or stimulate
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oxidative/nitrosative stress (Prehn et al, 1994; Mattson et
al, 1995; Dugan et al, 1995; Reynolds and Hastings, 1995;
Lafon-Cazal et al, 1993). Mitochondria participate in the
defence against cytosolic Ca2+ overload by sequestering
the ion (Gunter and Pfeiffer, 1990; Budd and Nicholls,
1996a). On the other hand, following Ca2+ overload or
nitrosative stress they eventually release their Ca2+,
generate reactive oxygen, collapse their membrane
potential and swell (Gunter and Pfeiffer, 1990). Compro-
mised mitochondria are not only passively involved in
cytotoxicity (i.e., because they do not provide the cell with
sufficient ATP), but they generate active signals involved in
the execution of apoptosis (Liu et al, 1996; Zamzami et al,
1996; Newmeyer et al, 1994; Susin et al, 1996; Yang et al,
1997; Kluck et al, 1997). Thus, mitochondria may act both
as buffers or enhancers, either helping cells to recover or
accelerating their demise (Figure 1).

Mitochondria and neuronal Ca2+-overload

Ca2+ is sequestered into mitochondria mainly via a Ca2+-
uniporter or via a Ca2+/2 Na+ antiporter, under conditions of
Na+-overload (Gunter and Pfeiffer, 1990; Gunter et al, 1994).
The uniporter is driven by the electrochemical membrane
potential and has a high capacity, but a relatively low affinity.
The lowest level at which brain mitochondria regulate [Ca2+]i
is 300 nM in the presence of spermine and may require even
higher Ca2+ concentrations (1 mM) under unfavourable

conditions. Thus, it has been assumed that Ca2+ is imported
into mitochondria only during conditions of prolonged
stimulation and overload, or when transient high Ca2+

concentrations are created at local sites close to mitochon-
dria. Studies in non-neuronal cells have shown that
mitochondria can load Ca2+ during physiological agonist
stimulation and may therefore contribute to lower elevated
[Ca2+]i (Rutter et al, 1993). Mitochondria have been shown to
help reduce considerably elevated [Ca2+]i following stimula-
tion of neurons (White and Reynolds, 1995; Kiedrowski and
Costa, 1995; Choi, 1988), and mitochondrial Ca2+-deposits
were found in cerebellar granule cells (CGCs), lethally
challenged with N-methyl-D-aspartate (NMDA) (Garthwaite
and Garthwaite, 1986) or in hippocampal neurons after stroke
(Simon et al, 1984). Although ATP production in some
neurons (i.e. CGC) may be efficiently provided by glycolysis
(Budd and Nicholls, 1996b; Choi, 1988), loss of mitochondrial
membrane potential still results in ATP depletion during
glutamate excitotoxicity (Ankarcrona et al, 1995). Accordingly,
also in the presence of oligomycin to block the mitochondrial
ATP synthase, the ATP/ADP ratio falls (Budd and Nicholls,
1996a). This may reflect inhibition of glycolysis due to
oxidative stress or the increased demand of ATP for
membrane pumps that counteract the massive Ca2+ or Na+-
overload. Thus, the recovery of ATP levels and mitochondrial
function following removal of glutamate (Ankarcrona et al,
1995) would be in line with a decreased Ca2+ load of cytosol
and mitochondria. This is in agreement with recent findings

Figure 1 The role of mitochondria in excitotoxicity. Accumulation of glutamate in synaptic clefts by excessive release or deficient reuptake leads to a prolonged
increase of Ca2+ in postsynaptic neurons. Glutamate-receptors of both N-methyl-D-aspartate (NMDA-R) and non-NMDA subtypes, as well as voltage-dependent
channels contribute to Ca2+-overload. Mitochondria can play multiple roles as modulators of cytotoxicity. They can sequester Ca2+ and indirectly modulate NMDA-
Rs and release reactive oxygen species, Ca2+ and proteins involved in apoptosis. (PT) permeability transition; Cyt C (holocytochrome C).
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that mitochondria play a primary role as feedback modulators
of excitotoxicity (Budd and Nicholls, 1996b). It was shown that
mitochondria would act as Ca2+ sinks, that may lower at least
for some time the Ca2+-dependent negative feedback on the
NMDA receptor (Legendre et al, 1993; Rosenmund and
Westbrook, 1993) and thereby control the influx of Ca2+ in
excitotoxicity. Thus, when Ca2+ accumulation in the
mitochondria is prevented, the inhibition of the NMDA
receptor would be enhanced (Budd and Nicholls, 1996a).

In intact mitochondria, Ca2+-extrusion is an energy-
requiring process (33 kJ/mol) (Gunter and Pfeiffer, 1990;
Gunter et al, 1994), and may be stimulated by oxidative
stress. Oxidation of NADH with subsequent mono-ADP-
ribosylation of mitochondrial proteins or formation of cyclic
ADP-ribose have been suggested as regulatory mechan-
isms. Such stress-enhanced Ca2+-extrusion may be the
basis of `Ca2+ cycling', i.e., continuous uptake and release
of Ca2+ by mitochondria, which precedes the dissipation of
the membrane potential and mitochondrial failure (Gunter et
al, 1994). The interaction of raised [Ca2+]i and ROS may
therefore lead to a vicious loop, since mitochondria,
stressed as a consequence of NMDA-R stimulation
(Dugan et al, 1995; Reynolds and Hastings, 1995) and
Ca2+-overload (Dykens, 1994), will produce increasing
amounts of ROS and Ca2+ cycling, further damaging an
already uncoupled respiratory chain.

A mechanism for mitochondrial Ca2+-release fundamen-
tally different from the one described above involves the
permeability transition (PT) of mitochondria (reviewed by
Zoratti and SzaboÁ , 1995; Kroemer, 1997). PT is associated
with the opening of a pore in the inner mitochondrial
membrane, which makes it completely permeable to ions
and small molecules. Under such conditions, mitochondrial
Ca2+ is released without energy-requirement. PT may be
induced in excitotoxicity following intracellular Ca2+-over-
load or oxidative stress and eventually results in the
breakdown of mitochondrial membrane potential and
swelling of the mitochondria.

PT may be a key switch responsible for the induction of
apoptosis (Figure 2). Studies in Dr Kroemer's laboratory
have recently suggested that a 50 kDa mitochondrial
protein can be released from the intermembrane space
during PT, and cause apoptotic-like changes in isolated
nuclei (Kroemer, 1997). In this context, it is important to
note that energization of mitochondria and maintenance of
their membrane potential does not necessarily require a
functional respiratory chain. ATP may be imported from the
cytosol via the ATP/ADP-translocator and then generate a
membrane potential through the oligomycin-sensitive proton
pump. Consequently, also mitochondria that are unable to
perform oxidative phosphorylation due to the lack of
proteins coded by mitochondrial DNA can undergo PT
and trigger nuclear apoptotic changes (Zamzami et al,
1996). The observations that during neuronal apoptosis
elicited by glutamate, mitochondrial function is only
transiently depressed and the initial ATP loss is rectified
suggest that a global collapse of mitochondrial membrane
potential is not necessary for apoptosis. In view of recent
findings from our (Leist et al, 1997c) and Dr Tsujimoto's
laboratory (Tsujimoto, 1997), a residual amount of ATP is

actually required for the progression towards apoptosis.
Thus, mitochondrial factors such as the 50 kDa protein
released from mitochondria may cause apoptosis in vivo
only in the presence of sufficient residual energy charge.
An alternative role for mitochondria has been recently
proposed by studies performed in the laboratories of Drs
Wang, Green and Newmayer (Kluck et al, 1997; Yang et al,
1997), who have suggested that pores may form on the
outer mitochondrial membrane through which holocyto-
chrome c (the heme complexed form of cytochrome c) can
enter the cytosol and subsequently participate in the
activation of caspases involved in the execution of
apoptosis (Figure 2). This step would not require a
complete and irreversible loss of mitochondrial membrane
potential and may be upstream or independent from the
proteolytic activity observed by Kroemer and his collabora-
tors.

Mitochondria in neuronal apoptosis and
necrosis

The duration and extent of Ca2+ influx may determine
whether neurons survive, die by apoptosis, or undergo
necrotic lysis (Choi, 1995). According to this paradigm,
continuous, but moderate increases in [Ca2+]i such as
those produced by a sustained slow influx or a transient
massive overload may cause apoptosis, whereas an
exceedingly high influx rate would cause rapid cell lysis.
For instance, stimulation of cortical neurons with high
concentrations of NMDA results in necrosis, whereas
exposure to lower concentrations causes apoptosis
(Bonfoco et al, 1995). Correspondingly, neuronal death in
experimental stroke models is necrotic in the ischemic
core, but delayed and apoptotic in the less severely
compromised penumbra or border regions (Li et al, 1995;
Charriaut-Marlangue et al, 1996). The sensors that switch
neurons towards one or the other fate may be multiple.
However, there is reason to believe some may be related
to mitochondrial function (Ankarcrona et al, 1995). We
have recently investigated the occurrence of apoptosis in
an in vitro model of excitotoxicity: CGCs exposed to
glutamate. Low concentrations of glutamate (i.e., 1 ± 10 mM)
triggered exclusively apoptosis, whereas with higher
glutamate concentrations most neurons underwent rapid
necrosis. The mechanisms deciding whether exposure of
cerebellar granule cells to glutamate results in apoptosis or
necrosis were also investigated. The experiments revealed
that during and shortly after exposure to glutamate, a
subpopulation of neurons died by necrosis. In these cells,
mitochondrial membrane potential and energy stores
collapsed, nuclei swelled and cellular debris were
scattered in the incubation medium. Neurons surviving
the early necrotic phase recover mitochondrial potential
and energy levels. Later, they underwent apoptosis, as
shown by the formation of apoptotic nuclei and chromatin
degradation into high and low molecular weight fragments.
These results suggested that the degree of mitochondrial
dysfunction and/or the maintenance of sufficient energy
levels were critical factors in determining the mode of
neuronal death in this system. Moderate or transient
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mitochondrial damage induced directly by Ca2+-overload or
by other as yet unknown upstream signals may actually
contribute to the execution of apoptosis. However, a
complete deenergization of the cell resulting from

extensive mitochondrial damage and a concomitant
inhibition of glycolysis would not allow the ordered
sequence of changes required for the apoptotic demise.
In such a case, death would occur by cell lysis/necrosis.

Figure 2 ATP as a switch in the decision between apoptosis and necrosis. Signals for cell death may activate initial common pathways involving both
mitochondrial and non-mitochondrial pathways. Depending on the intracellular ATP/ADP level, the shape of cell demise can change from apoptosis to necrosis. At
least two processes occurring in apoptosis seem to require adequate energy sources: (i) chromatin condensation, with proteolytic cleavage of some nuclear
proteins by caspases (bottom); (ii) surface appearance of phosphatidylserines (PS) required for the recognition of apoptotic cells by scavenger cells. Proteins
released by mitochondria include holocytochrome c (Cyt C) and the 50 KDa protein known as apoptosis-inducing factor (Kroemer, 1997). The latter is released
during permeability transition (PT).

Energy supply and cell death
P Nicotera & M Leist

438



Therefore, it seems likely that apoptosis ensues under
condition, where sufficient energy production remains to
execute an internal `death programme' (Figure 2). A
common finding in apoptosis is for example that of
morphologically intact mitochondria (Wyllie et al, 1980;
Hajos et al, 1986; Bohlinger et al, 1996), which may be
energised by electron transport or by import of cytoplasmic
ATP. Accordingly, ATP levels are maintained in different
neuronal populations undergoing apoptosis (Rothman et al,
1987; Ankarcrona et al, 1995; Mills et al, 1995).

A role for ATP generation in the decision
between apoptosis or necrosis

While apoptosis and necrosis have clearly distinguishing
morphological and biochemical features (Kerr et al, 1972), it is
becoming clear that they may share: (i) initial events, like
receptor signalling (Ankarcrona et al, 1995; Laster et al, 1988;
Leist et al, 1997c) (ii) some controlling systems including Bcl-2
and mitochondrial permeability transition (Shimizu et al, 1996;
Myers et al, 1995; Rosser and Gores, 1995; Aguilar et al,
1996) and (iii) effectors like caspases (Shimizu et al, 1996;
KuÈ nstle et al, 1997). Notably, in several pathological
conditions (e.g. brain ischemia; Linnik et al, 1995; Beilharz
et al, 1995; Portera-Cailliau et al, 1995; Charriaut-Marlangue
et al, 1996), liver damage by cytokines or toxins (Leist et al,
1995, 1996, 1997b) demise can occur simultaneously by
necrosis or apoptosis. Work in our laboratory and in
collaboration with Dr SA Lipton and Dr S Orrenius has
previously shown that the intensity of the same initial insult
decides the prevalence of either apoptosis or necrosis
(Dypbukt et al, 1994; Bonfoco et al, 1995). This suggests
that while initial events may be common to both types of cell
death, a certain metabolic condition would be required to
activate downstream controllers which direct cells towards the
organised execution of apoptosis (Figure 2).

Our previous work showed that intracellular energy
levels are rapidly dissipated in necrosis, but not in
apoptosis of neuronal cells (Ankarcrona et al, 1995).
Thus, to investigate whether ATP availability was involved
in the decision between apoptosis and necrosis, we
clamped intracellular ATP levels using a paradigm of
glucose deprivation/repletion in conjunction with a blocker
of the mitochondrial ATP synthase, oligomycin. Lymphoid
cells (Jurkat) were treated with two well known inducers of
apoptosis: (i) anti-CD95 antibodies (aCD95) that elicit
apoptosis by activating cell surface CD95 receptors
(Boldin et al, 1996, Muzio et al, 1996); (ii) the protein
kinase inhibitor staurosporin (STS) that, at high concentra-
tions, triggers apoptosis in a wide variety of mammalian
cells (Weil et al, 1996). Neither of these stimuli requires a
functional respiratory chain for the induction of apoptosis
(Jacobson et al, 1993; Anel et al, 1996).

Our results showed that ATP is required for the
progression of apoptosis (Figure 2). In conditions of ATP
depletion, cells treated with either STS or CD95 underwent
necrosis. Selective and graded repletion of the extrami-
tochondrial ATP pool with glucose prevented necrosis and
restored the ability of cells to undergo apoptosis.
Maintenance of a certain ATP level may have simply

prevented an early, passive breakdown of the plasma
membrane. In this case, the development of apoptosis,
which would not necessarily require ATP, could have been
precluded by a premature demise with apparent necrotic
features. However, we found that necrosis elicited by either
STS or CD95 in ATP-depleted cells occurred with a similar
or rather longer time course than apoptosis, suggesting that
an active step was required for the progression of
apoptosis. Using a paradigm of pulsed ATP-depeletion/
repletion, we then showed that ATP generation either by
glycolysis or by mitochondria was required for at least two
events in apoptosis: the active execution of the final phase
of apoptosis, which involves nuclear condensation and
DNA degradation and the expression of membrane
phosphatidylserines (Leist et al, 1997c) required for the
recognition of apoptotic cells by macrophages (Figure 2).

Differences in the fate of the nucleus were epitomised by
the selective degradation of lamins in apoptosis (Figure 3).
This process pivotal for nuclear collapse in many systems
(Oberhammer et al, 1994; Neamati et al, 1995; Ankarcrona
et al, 1996) is effected by the activation of caspases or
other proteases during apoptosis (Lazebnik et al, 1995;
Voelkel-Johnson et al, 1995; Zhivotovsky et al, 1995). In
necrosis observed under conditions of ATP-depletion,
caspase-mediated cleavage of lamin B was instead
significantly reduced (Figure 3). This suggests that at
least one component of nuclear degradation observed in
apoptosis may require ATP-dependent steps for the
activation and possibly the translocation of caspases into
the nucleus. Recent work in Dr Orrenius' laboratory has
indeed suggested that ATP is required for part of the
nuclear changes elicited by cytosol extracted from CD95-
treated cells (Kass et al, 1996). Nuclear Ca2+ uptake is also
an energy requiring process and while characterising the
Ca2+ dependent endonuclease activity in collaboration with
Dr Orrenius (Jones et al, 1989), we showed that nuclei can

DNA         lamin

STS STS +

oligomycin

Figure 3 Prevention of lamin breakdown by ATP-depletion. Control cells
(top) were treated with staurosporine (STS) or staurosporine plus oligomycin.
Images were taken by confocal microscopy after immunocytochemical staining
of lamin B (lamin) and DNA-staining with H-33342. Control cells and STS plus
oligomycin-treated cells (necrotic) showed the typical circular lamin structure
around non-condensed chromatin, while STS-treated (apoptotic) cells
displayed chromatin condensation and fragmentation, associated with
breakdown of the lamin nucleoskeleton.
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sequester Ca2+ in an energy-dependent manner (Nicotera
et al, 1989, 1990). Notably, recent reports have shown that
apoptosis suppression by Bcl-2 correlates with its ability to
reduce nuclear Ca2+ uptake (Marin et al, 1996; McConkey,
1996).

One relevant feature of apoptosis is the relatively
efficient removal of apoptotic bodies (Savill et al, 1993).
Notably, apoptotic cells are not only removed by
`professional' macrophages, but also by `normal' neighbour-
ing cells e.g. in C. elegans, in many tumours, and in
hepatocytes. Recognition and removal of dead cells is one
of the most relevant features in apoptosis with respect to its
value in limiting adverse effects in the neighbouring tissue.
In view of these considerations, the finding that, in our
experimental paradigm, early expression of phosphatidyl-
serines is dependent on ATP and it is restricted to
apoptotic cells has important implications (Leist et al,
1997c) (Figure 2).

Conclusions

During the last couple of years it has become clear that
mitochondria play an important role in apoptosis. The
`cytoplasmic controller' (Jacobson et al, 1994) implicated in
the activation of downstream events resulting in the typical
apoptotic features including proteolysis of nuclear elements
and DNA degradation may either directly originate from
mitochondria (Kroemer, 1997) or require a mitochondrial
factor for its activation (Kluck et al, 1997; Yang et al, 1997).
This would also explain several observations of the protective
effect of antiapoptotic proteins such as Bcl-2 or Bcl-xL, which
would act on the mitochondria (Golstein, 1997; Kroemer,
1997; Tsujimoto, 1997).

While not all pathways leading to cell death may
necessarily involve mitochondria, several could activate
upstream effectors/controllers that converge in their actions
on mitochondria. This would cause permeability transition
and/or permeabilization of the mitochondrial outer mem-
brane (a pore forming protein deprived of an inhibitory
partner? Golstein, 1997). Our findings suggest that either
the upstream controller or the execution system(s) down-
stream of the mitochondria can be modulated by the
availability of ATP (Ankarcrona et al, 1995; Leist et al,
1997c). The latter may be provided by glycolysis or, in
tissues with high metabolic demand, primarily by energized
mitochondria.

Thus, apoptosis and necrosis would be two extremes of
a continuum of possible types of cell demise, whose shape
and implications for the neighbouring tissue would be
decided by the availability of ATP in addition to other
factors in the dying cell and in scavenger cells. This would
explain the frequent coexistence of both types of demise in
pathological situations where individual cell death within the
tissue would be decided by the energy supply. While it
appears useful for multicellular organisms that physiological
cell death occurs by apoptosis, it would be tempting to
speculate that selection of apoptosis and necrosis may not
be casual. Certain pathological conditions (i.e. pathogen
infections) may require a rapid inflammatory response to
clear the pathogen. In this case, the recruitment of a

systemic defence system involving infiltration, inflammation
and also some additional tissue damage may be beneficial.
Under these circumstances death by necrosis, which does
not apparently lead to expression of surface recognition
signals would be a better choice. Thus, apoptosis and
necrosis could be seen not only as different forms of
demise in individual cells, but they may reflect the decision
of the tissue or organism, between a local, silent or a
global, disruptive reaction.
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