Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A distance to the galaxy NGC4258 from observations of Cepheid variable stars

Abstract

Cepheid variable stars pulsate in a way that is correlated with their intrinsic luminosity, making them useful as ‘standard candles’ for determining distances to galaxies; the potential systematic uncertainties in the resulting distances have been estimated1 to be only 8–10%. They have played a crucial role in establishing the extragalactic distance scale and hence the value of the Hubble constant. Here we report observations of Cepheids in the nearby galaxy NGC4258; the distance calculated from the Cepheids is 8.1 ± 0.4 Mpc, where the uncertainty does not include possible systematic errors. There is an independently determined geometric distance to this galaxy of 7.2 ± 0.5 Mpc, based on the observed proper motions of water masers orbiting the central black hole2; the distances differ by 1.3σ. If the maser-based distance is adopted and the Cepheid distance scale revised accordingly, the derived value of the Hubble constant would increase by 12 ± 9%, while the expansion age of the Universe would decrease by the same amount.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Light curves for three representative examples of the Cepheids in NGC4258.
Figure 2: NGC4258 period–luminosity relations.

References

  1. Mould,J. R. et al. The HST Key Project on the Extragalactic Distance Scale XXVIII. Combining the constraints on the Hubble constant. Astrophys. J. (submitted).

  2. Hernstein,J. R. et al. A geometric distance to the galaxy NGC4258 from orbital motions in a nuclear gas disk. Nature 400, 539–541 (1999).

    ADS  Article  Google Scholar 

  3. Madore,B. F. & Freedman,W. L. The Cepheid distance scale. Publ. Astron. Soc. Pacif. 103, 933–957 (1991).

    ADS  Article  Google Scholar 

  4. Jacoby,G. H. et al. A critical review of selected techniques for measuring extragalactic distances. Publ. Astron. Soc. Pacif. 104, 599–662 (1992).

    ADS  Article  Google Scholar 

  5. Freedman,W. L. in Critical Dialogues in Cosmology (ed. Turok, N.) 92–129 (World Scientific, Singapore, 1997).

    Google Scholar 

  6. Kennicutt, R. C. Jr, Freedman,W. L. & Mould,J. R. Measuring the Hubble constant with the Hubble Space Telescope. Astron. J. 100, 1476–1491 (1995).

    ADS  Article  Google Scholar 

  7. Saha,A. et al. Discovery of Cepheids in IC 4182: Absolute peak brightness of SN Ia 1937C and the value of H0. Astrophys. J. 425, 14–34 (1994).

    ADS  CAS  Article  Google Scholar 

  8. Freedman,W. L. in Particle Physics and the Universe (World Scientific, Singapore, in the press); also as preprint astro-ph/9905222 at 〈http://xxx.lanl.gov (1999)〉.

  9. Freedman,W. L. in Relativistic Astrophysics and Cosmology (eds Olinto, A. V., Schramm, D. N. & Frieman, J. A.) (World Scientific, Singapore, 1998).

    Google Scholar 

  10. Miyoshi et al. Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC4258. Nature 373, 127–129 (1995).

    ADS  CAS  Article  Google Scholar 

  11. Maoz,E. Dynamical constraints on alternatives to supermassive black holes in galactic nuclei. Astrophys. J. 494, L181–L184 (1995).

    ADS  Article  Google Scholar 

  12. Greenhill,L. J., Henkel,C., Becker,R., Wilson,T. L. & Wouterloot,J. G. A. Centripetal acceleration within the subparsec nuclear maser disk of NGC 4258. Astron. Astrophys. 304, 21–33 (1995).

    ADS  Google Scholar 

  13. Stetson,P. B. The center of the core-cusp globular cluster M15: CFHT and HST observations, ALLFRAME reductions. Publ. Astron. Soc. Pacif. 106, 250–280 (1994).

    ADS  Article  Google Scholar 

  14. Schechter,P. L., Mateo,M. & Saha,A. DoPHOT, a CCD photometry program: Description and tests. Publ. Astron. Soc. Pacif. 105, 1342–1353 (1993).

    ADS  Article  Google Scholar 

  15. Ferrarese,L. et al. The Extragalactic Distance Scale Key Project. IV. The discovery of Cepheids and a new distance to M100 using the Hubble Space Telescope. Astrophys. J. 464, 568–599 (1998).

    ADS  Article  Google Scholar 

  16. Stetson,P. B. et al. The Extragalactic Distance Scale Key Project. XVL. Cepheid variables in an inner field of M101. Astrophys. J. 508, 491–517 (1998).

    ADS  Article  Google Scholar 

  17. Newman,J. A. et al. A Cepheid distance to NGC4603 in Centaurus. Astrophys. J. (in the press).

  18. Cardelli,J. C., Clayton,G. C. & Mathis,J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256 (1989).

    ADS  CAS  Article  Google Scholar 

  19. Ferrarese,L. F. et al. The HST Key Project on the Extragalactic Distance Scale XXVI. The calibration of Population II secondary distance indicators and the value of the Hubble constant. Astrophys. J. (in the press); also as preprint astro-ph/9908192 at 〈http://xxx.lanl.gov (1999)〉.

  20. Madore,B. F. et al. The Hubble Space Telescope Key Project on the Extragalactic Distance Scale XV. A Cepheid distance to the Fornax cluster and its implications. Astrophys. J. 515, 29–41 (1999).

    ADS  Article  Google Scholar 

  21. Kennicutt, R. C. Jr et al. The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XIII. The metallicity dependence of the Cepheid distance scale. Astrophys. J. 498, 181–914 (1998).

    ADS  Article  Google Scholar 

  22. Zaritsky,D., Kennicutt, R. C. Jr, Huchra,J. P. H II regions and the abundance properties of spiral galaxies. Astrophys. J. 420, 87–109 (1994).

    ADS  Article  Google Scholar 

  23. Gould,A. & Uza,O. Upper limit to the distance to the Large Magellanic Cloud. Astrophys. J. 494, 118–124 (1998).

    ADS  CAS  Article  Google Scholar 

  24. Panagia,N. in New Views of the Magellanic Clouds (eds Chu, Y. H., Suntzeff, N. B., Hesser, J. E. & Bohlender, D.) (Astronomical Society of the Pacific, San Francisco, 1999).

    Google Scholar 

  25. Bartel,N. et al. Expansion of Supernova 1993J. Bull. Am. Astron. Soc. 194.6208 (1999).

  26. Freedman,W. L. et al. The Hubble Space Telescope Extragalactic Distance Scale Key Project. 1: the discovery of Cepheids and a new distance to M81. Astrophys. J. 427, 628–655 (1994).

    ADS  Article  Google Scholar 

  27. Eastman,R. G., Schmidt,B. P. & Kirschner,R. The atmospheres of type II supernovae and the expanding photosphere method. Astrophys. J. 466, 911–937 (1996).

    ADS  CAS  Article  Google Scholar 

  28. Sakai,S. et al. The Hubble Space Telescope Key Project on the Extragalactic Distance Scale XXIV. The calibration of Tully-Fisher relations and the value of the Hubble constant. Astrophys. J. (submitted).

  29. Krauss,L. M. The end of the age problem, and the case for a cosmological constant revisited. Astrophys. J. 501, 461–466 (1998).

    ADS  Article  Google Scholar 

  30. Stetson,P. B. On the automatic determination of light-curve parameters for Cepheid variables. Publ. Astron. Soc. Pacif. 108, 851–876 (1996).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyal Maoz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maoz, E., Newman, J., Ferrarese, L. et al. A distance to the galaxy NGC4258 from observations of Cepheid variable stars. Nature 401, 351–354 (1999). https://doi.org/10.1038/43838

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/43838

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing