Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation

Abstract

Apoptosis is defined by several unique morphological nuclear changes, such as chromatin condensation and nuclear fragmentation1. These changes are triggered by the activation of a family of cysteine proteases called caspases2,3, and caspase-activated DNase (CAD/DFF40)4,5 and lamin protease (caspase-6)6,7 have been implicated in some of these changes. CAD/DFF40 induces chromatin condensation in purified nuclei, but distinct caspase-activated factor(s) may be responsible for chromatin condensation8. Here we use an in vitro system to identify a new nuclear factor, designated Acinus, which induces apoptotic chromatin condensation after cleavage by caspase-3 without inducing DNA fragmentation. Immunodepletion experiments showed that Acinus is essential for apoptotic chromatin condensation in vitro, and an antisense study revealed that Acinus is also important in the induction of apoptotic chromatin condensation in cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification of an apoptotic chromatin-condensation factor from bovine thymus.
Figure 2: Primary structure of Acinus, and cleavage of Acinus by caspase-3.
Figure 3: Induction of chromatin condensation in permeabilized cell nuclei by recombinant Acinus, and nuclear localization of Acinus.
Figure 4: Role of Acinus for chromatin condensation in vitro.
Figure 5: Role of Acinus for apoptotic chromatin condensation in cells.

Similar content being viewed by others

References

  1. Kerr,J. F. R., Wyllie,A. H. & Currie,A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Salvesen,G. S. & Dixit,V. M. Caspases: intracellular signaling by proteolysis. Cell 91, 443–446 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Thornberry,N. A. & Lazebnik,Y. Caspases: Enemies within. Science 281, 1312–1316 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Enari,M. et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Liu,X. et al. The 40-kDa subunit DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc. Natl Acad. Sci. USA 95, 8461–8466 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takahashi,A. et al. Cleavage of lamin A by Mch2α but not CPP32: multiple ICE-related proteases with distinct substrate recognition properties are active in apoptosis. Proc. Natl Acad. Sci. USA 93, 8395–8400 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Orth,K. et al. The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J. Biol. Chem. 271, 16443–16446 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Samejima,K. et al. Transition from caspase-dependent to caspase-independent mechanisms at the onset of apoptotic execution. J. Cell Biol. 143, 225–239 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Adam,S. A., Marr,R. S. & Gerace,L. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J. Cell Biol. 111, 807–816 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Yoneda,Y., Imamoto-Sonobe,N., Yamaizumi,M. & Uchida,T. Reversible inhibition of protein import into the nucleus by wheat germ agglutinin injected into cultured cells. Exp. Cell Res. 173, 586–595 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Ishikawa,K. et al. Prediction of the coding sequences of unidentified human genes. X. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. DNA Res. 5, 169–176 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Samuels,M. E., Schedl,P. & Cline,T. W. The complex set of late transcripts from the Drosophila sex determination gene sex-lethal encodes mutliple related polypeptides. Mol. Cell. Biol. 11, 3584–3602 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saraste,M., Sibbald,P. R. & Wittinghofer,A. The P-loop-a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430–434 (1990).

    Article  PubMed  Google Scholar 

  14. Susin,S. A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Zhang,J. et al. Resistance to DNA fragmentation and chromatin condensation in mice lacking the DNA fragmentation factor 45. Proc. Natl Acad. Sci. USA 95, 12480–12485 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mukae,N. et al. Molecular cloning and characterization of human caspase-activated DNase. Proc. Natl Acad. Sci. USA 95, 9123–9128 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yasuhara,N. et al. Essential role of active nuclear transport in apoptosis. Genes Cells 2, 55–64 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Imamoto,N. et al. In vivo evidence for involvement of a 58 kDa component of nuclear pore-targeting complex in nuclear protein import. EMBO J. 14, 3617–3626 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tachibana,T., Hieda,M., Sekimoto,T. & Yoneda,Y. Exogenously injected-nuclear import factor p10/NTF2 inhibits signal-mediated nuclear import and export of proteins in living cells. FEBS Lett. 397, 177–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Melchior,F., Sweet,D. J. & Gerace,L. Analysis of Ran/TC4 function in nuclear protein import. Methods Enzymol. 257, 279–291 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Gorlich,D., Prehn,S., Laskey,R. A. & Hartman,E. Isolation of a protein that is essential for the first step of nuclear protein import. Cell 79, 767–778 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Matsudaira,P. A Practical Guide to Protein and Peptide Purification for Microsequencing (Academic, San Diego, 1993).

    Google Scholar 

  23. Hirano,T., Kobayashi,R. & Hirano,M. Condensins, chromosome condensation protein complex containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89, 511–521 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Niwa,H., Yamamura,K. & Miyazaki,J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Enari,M., Hase,A. & Nagata,S. Apoptosis by a cytosolic extract from Fas-activated cells. EMBO J. 14, 5201–5208 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iwahashi,H. et al. Synergistic anti-apoptotic activity between Bcl-2 and SMN implicated in spinal muscular atrophy. Nature 390, 413–417 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank O. Ohara and J. Miyazaki for KIAA0670 plasmid and pCAGGS plasmid, respectively, and Y. Sakamoto for help with microsequence analysis. This work was supported in part by grants for Scientific Research on Priority Areas, for COE Research, and for JSPS fellows from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihide Tsujimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahara, S., Aoto, M., Eguchi, Y. et al. Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature 401, 168–173 (1999). https://doi.org/10.1038/43678

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/43678

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing