Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide

Abstract

Gene activation is a highly regulated process that requires the coordinated action of proteins to relieve chromatin repression and to promote transcriptional activation. Nuclear histone acetyltransferase (HAT) enzymes provide a mechanistic link between chromatin destabilization and gene activation by acetylating the ε-amino group of specific lysine residues within the amino-terminal tails of core histones to facilitate access to DNA by transcriptional activators1,2. Here we report the high-resolution crystal structure of the HAT domain of Tetrahymena GCN5 (tGCN5) bound with both its physiologically relevant ligands, coenzyme A (CoA) and a histone H3 peptide, and the structures of nascent tGCN5 and a tGCN5/acetyl-CoA complex. Our structural data reveal histone-binding specificity for a random-coil structure containing a G-K-X-P recognition sequence, and show that CoA is essential for reorienting the enzyme for histone binding. Catalysis appears to involve water-mediated proton extraction from the substrate lysine by a glutamic acid general base and a backbone amide that stabilizes the transition-state reaction intermediate. Comparison with related N-acetyltransferases indicates a conserved structural framework for CoA binding and catalysis, and structural variability in regions associated with substrate-specific binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the ternary tGCN5/CoA/histone H3 peptide complex.
Figure 2: The tGCN5 binding site for the histone H3 peptide.
Figure 3: Comparison between tGCN5, tGCN5/acetyl-CoA and tGCN5/CoA/histone H3.
Figure 4: The tGCN5 active site.

Similar content being viewed by others

References

  1. Grant,P. A., Sterner,D. E., Duggan,L. J., Workman,J. L. & Berger,S. L. The SAGA unfolds: convergence of transcription regulators in chromatin-modifying complexes. Trends Cell Biol. 8, 193–197 (1998).

    Article  CAS  Google Scholar 

  2. Mizzen,C. A. & Allis,C. D. Linking histone acetylation to transcriptional regulation. Cell. Mol. Life Sci. 54, 6–20 (1998).

    Article  CAS  Google Scholar 

  3. Trievel,R. C. et al. Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc. Natl Acad. Sci. USA 96, 8931–8936 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Clements,A. et al. Crystal structure of the histone acetyltransferase domain of the human P/CAF transcriptional regulator bound to coenzyme-A. EMBO J. 18, 3521–3532 (1999).

    Article  CAS  Google Scholar 

  5. Neuwald,A. F. & Landsman,D. GCN5-related histone N-acetyltransferases belong to a diverse superfamily that include the yeast SPT10 protein. Trends Biochem. Sci. 22, 154–155 (1997).

    Article  CAS  Google Scholar 

  6. Dutnall,R. N., Tafrov,S. T., Sternglanz,R. & Ramakrishnan,V. Structure of the histone acetyltransferase Hat1: A paradigm for the GCN5-related N-acetyltransferase superfamily. Cell 94, 427–438 (1998).

    Article  CAS  Google Scholar 

  7. Wolf,E. et al. Crystal structure of a GCN5-related N-acetyltransferase: Serratia maracescens aminoglycoside 3-N-acetyltransferase. Cell 94, 439–449 (1998).

    Article  CAS  Google Scholar 

  8. Hickman,A., Namboodiri,M. A. A., Klein,D. C. & Dyda,F. The structural basis of ordered substrate binding by serotonin N-acetyltransferase: Enzyme complex at 1.8 Å resolution with a bisubstrate analog. Cell 97, 361–369 (1999).

    Article  CAS  Google Scholar 

  9. Hickman,A. B., Klein,D. C. & Dyda,F. Melatonin biosynthesis: The structure of serotonin N-acetyltransferase at 2.5 angstrom resolution suggests a catalytic mechanism. Mol. Cell 3, 23–32 (1999).

    Article  CAS  Google Scholar 

  10. Lin,Y., Fletcher,M., Zhou,J., Allis,C. D. & Wagner,G. Solution structure of the catalytic domain of Tetrahymena GCN5 histone acetyltransferase in complex with coenzyme A. Nature 400, 86–89 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Tanner,K. G. et al. Catalytic mechanism and function of invariant glutamic acid-173 from the histone acetyltransferase GCN5 transcriptional coactivator. J. Biol. Chem. 274, 18157–18160 (1999).

    Article  CAS  Google Scholar 

  12. Kuo,M. H., Zhou,J. X., Jambeck,P., Churchill,M. E. A. & Allis,C. D. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12, 627–639 (1998).

    Article  CAS  Google Scholar 

  13. Wang,L., Liu,L. & Berger,S. L. Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev. 12, 640–653 (1998).

    Article  CAS  Google Scholar 

  14. Grant,P. A. et al. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11, 1640–1650 (1997).

    Article  CAS  Google Scholar 

  15. Grant,P. A. et al. Expanded lysine acetylation specificity of Gcn5 in native complexes. J. Biol. Chem. 274, 5895–5900 (1999).

    Article  CAS  Google Scholar 

  16. Weston,S. A. et al. Crystal structure of the anti-fungal target N-myristoyltransferase. Nature Struct. Biol. 5, 213–221 (1998).

    Article  CAS  Google Scholar 

  17. Bhatnagar,R. S. et al. Structure of N-myristoyltransferase with bound myristoylCoA and peptide substrate analogs. Nature Struct. Biol. 5, 1091–1097 (1998).

    Article  CAS  Google Scholar 

  18. Otwinowski,Z. in Proceedings of the CCP4 Study Weekend: Data collection and processing (eds Sawyer, L., Isaacs, N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington, UK, 1993).

    Google Scholar 

  19. Leslie,A. G. W. in CCP4 and ESF-EACMB Newsletter on Protein Crystallography (Daresbury Laboratory, Daresbury, UK, 1992).

    Google Scholar 

  20. Furey,W. & Swaminathan,S. in Methods in Enzymology (eds Carter, C. W. & Sweet, R. M.) 590–620 (Academic, Orlando, 1997).

    Google Scholar 

  21. Jones,T. A., Zou,J. Y. & Cowen,S. W. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  22. Brunger,A. T. X-PLOR Manual, Version 3.8 (Yale Univ. Press, New Haven, 1996).

    Google Scholar 

  23. Brunger,A. T. & Krukowski,A. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Crystallogr. A 46, 585–593 (1990).

    Article  Google Scholar 

  24. Rice,L. M. & Brunger, A T. Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement. Proteins 19, 277–290 (1994).

    Article  CAS  Google Scholar 

  25. Jiang,J. S. & Brunger,A. T. Protein hydration observed in X-ray diffraction: solvation properties of penicillopepsin and neuraminidase crystal structures. J. Mol. Biol. 243, 100–115 (1994).

    Article  CAS  Google Scholar 

  26. Brunger,A. T., Kuriyan,J. & Karplus,M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Navaza,J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  28. Brunger,A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  29. Jones,T. A. A graphics model building and refinement system for macromolecules. J. Appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Berendzen, B. Sweet and their staff for access to and help on beamline X8C at NSLS; D. Thiel and his staff for access to and help on beamlines A1 and F2 at CHESS; and R. Venkataramani, A. Clements, T. Stams and D. King for useful discussions. This work was supported by NIH grants to R.M., S.L.B. and C.D.A., an NIH Under-represented Minority Supplement to J.R.R., a Howard Hughes predoctoral fellowship to R.C.T. and a grant from the Fannie E. Rippel Foundation to R.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronen Marmorstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas, J., Trievel, R., Zhou, J. et al. Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide. Nature 401, 93–98 (1999). https://doi.org/10.1038/43487

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/43487

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing