Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystallization of hard-sphere colloids in microgravity

Abstract

The structure of, and transitions between, liquids, crystals and glasses have commonly been studied with the hard-sphere model1,2,3,4,5, in which the atoms are modelled as spheres that interact only through an infinite repulsion on contact. Suspensions of uniform colloidal polymer particles are good approximations to hard spheres6,7,8,9,10,11, and so provide an experimental model system for investigating hard-sphere phases. They display a crystallization transition driven by entropy alone. Because the particles are much larger than atoms, and the crystals are weakly bound, gravity plays a significant role in the formation and structure of these colloidal crystals. Here we report the results of microgravity experiments performed on the Space Shuttle Columbia to elucidate the effects of gravity on colloidal crystallization. Whereas in normal gravity colloidal crystals grown just above the volume fraction at melting show a mixture of random stacking of hexagonally close-packed planes (r.h.c.p.) and face-centred cubic (f.c.c.) packing if allowed time to settle7,8, those in microgravity exhibit the r.h.c.p. structure alone, suggesting that the f.c.c. component may be induced by gravity-induced stresses. We also see dendritic growth instabilities that are not evident in normal gravity, presumably because they are disrupted by shear-induced stresses as the crystals settle under gravity. Finally, glassy samples at high volume fraction which fail to crystallize after more than a year on Earth crystallize fully in less than two weeks in microgravity. Clearly gravity masks or alters some of the intrinsic aspects of colloidal crystallization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bragg scattering geometry.
Figure 2: Scattering intensity as a function of angle obtained by averaging many scattering images as in Fig. 1b for a sample with φ= 0.537.
Figure 3: Left, photograph of a sample of 508-nm PMMA spheres in index-matching suspension at volume fraction φ= 0.504, in the coexistence region of the phase diagram.
Figure 4: This sample, with φ= 0.619 (deep in the ‘glass’ phase) completely crystallized in microgravity after failing to crystallize in normal gravity.

Similar content being viewed by others

References

  1. Wood, W. W. & Jacobsen, J. D. Preliminary results from recalculation of the Monte Carlo equation of state of hard spheres. J. Chem. Phys. 27, 1207–1208 (1957).

    Article  ADS  CAS  Google Scholar 

  2. Adler, B. J. & Wainwright, T. E. Phase transition for a hard sphere system. J. Chem. Phys. 27, 208–1209 (1957).

    Google Scholar 

  3. Hoover, W. G. & Ree, F. H. J. Melting transition and communal entropy for hard spheres. Chem. Phys. 49, 3609–3617 (1968).

    ADS  CAS  Google Scholar 

  4. Alder, B. J., Hoover, W. G. & Young, D. A. Studies in molecular dynamic V. High density equation of state and entropy for hard disks and spheres. J. Chem. Phys. 49, 3688–3696 (1968).

    Article  ADS  CAS  Google Scholar 

  5. Woodcock, L. V. Glass transition and the hard sphere model. J. Chem. Soc. Faraday II 72, 1667–1672 (1976).

    Article  CAS  Google Scholar 

  6. Pusey, P. N. & van Megen, W. Phase behavior of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Pusey, P. N., van Megen, W., Bartlett, W. P. & Ackerson, B. J. Structure of crystals of hard colloidal spheres. Phys. Rev. Lett. 63, 2753–2756 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Pusey, P. N. in Liquids, Freezing and the Glass Transition Course 10, Colloidal Suspensions (eds Hansen, J. P., Leveesque, D. & Zinn-Justin, J.) 763–942 (Elsevier, Amsterdam, (1991)).

    Google Scholar 

  9. de Kruif, C. G., Jansen, J. W. & Vrij, A. in Physics of Complex and Supramolecular Fluids (eds Safran, S. A. & Clark, N. A.) 315–343 (Wiley-Interscience, New York, (1987)).

    Google Scholar 

  10. Smitz, C., Briels, W. J., Dhont, J. K. G. & Lekkerkerker, H. N. W. Influence of stabilizing coating on the rate of crystallization of colloidal systems. Prog. Colloid Polym. Sci. 78, 287–292 (1989).

    Article  Google Scholar 

  11. Phan, S. E. et al. Phase transition, equation of state, and limiting shear viscosities of hard sphere dispersions. Phys. Rev. E 54, 6633–6645 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Biben, T., Ohnesorge, R. & Lowen, H. Crystallization in sedimentation profiles of hard spheres. Europhys. Lett. 28, 665–670 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Frenkel, D. & Ladd, A. J. C. New Monte Carlo method to compute the free energy of arbitrary solids. Applciation to the fcc and hcp phases of hard spheres. J. Chem. Phys. 81, 3188–3193 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Woodcock, L. V. Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures. Nature 385, 141–143 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Wilson, A. J. C. Imperfections in the structure of a cobalt II. Mathematical treatment of the proposed structure. Proc. R. Soc. Lond. A 180, 277–285 (1942).

    Article  ADS  CAS  Google Scholar 

  16. Gast, A. & Monovoukas, Y. Anew growth instability in colloidal crystallization. Nature 351, 553–557 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Schatzel, K. & Ackerson, B. J. Observation of density fluctuations during crystallization. Phys. Rev. Lett. 68, 337–340 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Ackerson, B. J. & Schatzel, K. Classical growth of hard-sphere colloidal crystals. Phys. Rev. B 52, 6448–6460 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Russel, W. B., Chaikin, P. M., Zhu, J., Meyer, W. V. & Rogers, R. Dendritic growth of hard sphere crystals. Langmuir (in the press).

  20. Langer, J. S. Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 52, 1–28 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Frenkel, D. & Ladd, A. J. C. Elastic constants of hard sphere crystals. Phys. Rev. Lett. 59, 1169 (1987).

    Article  ADS  CAS  Google Scholar 

  22. van Megen, W. & Underwood, S. M. Glass transition in colloidal hard spheres: mode coupling theory analysis. Phys. Rev. Lett. 70, 2766–2769 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. van Megen, W. & Underwood, S. M. Glass transition in colloidal hard spheres: measurement and mode coupling theory analysis of the coherent intermediate scattering functions. Phys. Rev. E 49, 4206–4220 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Rintoul, M. D. & Torquato, S. Computer simualtions of dense hard-sphere systems. Chem. Phys. 105, 9258–9265 (1996).

    ADS  CAS  Google Scholar 

  25. Ononda, G. Y. & Liniger, E. G. Random loose packings of uniform spheres and the dilatancy onset. Phys. Rev. Lett. 64, 2727–2730 (1990).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. J. Ackerson, P. N. Pusey and D. A. Huse for discussions. This work was supported by the NASA Microgravity Sciences program.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to P. M. Chaikin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Li, M., Rogers, R. et al. Crystallization of hard-sphere colloids in microgravity. Nature 387, 883–885 (1997). https://doi.org/10.1038/43141

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/43141

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing