Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-trapping of incoherent white light

Abstract

Optical pulses—wave-packets—propagating in a linear medium have a natural tendency to broaden in time (dispersion) and space (diffraction). Such broadening can be eliminated in a nonlinear medium that modifies its refractive index in the presence of light in such a way that dispersion or diffraction effects are counteracted by light-induced lensing1,2. This can allow short pulses to propagate without changing their shape2,3, and the ‘self-trapping’ of narrow optical beams1 whereby a beam of light induces a waveguide in the host medium and guides itself in this waveguide, thus propagating without diffraction4. Self-trapped pulses in space and time have been investigated extensively in many physical systems and, as a consequence of their particle-like behaviour, are known as ‘solitons’ (ref. 5). Previous studies of this phenomenon in various nonlinear media6,7,8,9,10,11,12 have involved coherent light, the one exception being our demonstration13 of self-trapping of an optical beam that exhibited partial spatial incoherence. Here we report the observation of self-trapping of a white-light beam from an incandescent source. Self-trapping occurs in both dimensions transverse to the beam when diffraction effects are balanced exactly by self-focusing in the host photorefractive medium. To the best of our knowledge, this is the first observation of self-trapping for any wave-packet that is both temporally and spatially incoherent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Steady-state self-trapping of a white-light beam.
Figure 3: Quasi-steady-state self-trapping of a white-light beam.

Similar content being viewed by others

References

  1. Chiao, R. Y., Garmire, E. & Townes, C. H. Self-trapping of optical beams. Phys. Rev. Lett. 13, 479–482 (1964).

    Article  ADS  Google Scholar 

  2. Hasegawa, A. & Tappert, F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. Appl. Phys. Lett. 23, 142–144 (1973).

    Article  ADS  CAS  Google Scholar 

  3. Mollenauer, L. F., Stolen, R. H. & Gordon, J. P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980).

    Article  ADS  Google Scholar 

  4. Snyder, A. W., Mitchell, D. J., Poladian, L. & Ladouceur, F. Self-induced optical fibers. Opt. Lett. 16, 21–23 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Zabusky, N. J. & Kruskal, M. D. Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965).

    Article  ADS  Google Scholar 

  6. Bjorkholm, J. E. & Ashkin, A. Self-focusing and self-trapping of light in sodium vapor. Phys. Rev. Lett. 32, 129–132 (1974).

    Article  ADS  Google Scholar 

  7. Barthelemy, A., Maneuf, S. & Froehly, C. Propagation soliton et auto-confinement de faisceaux laser par non linearite optique de kerr. Opt. Commun. 55, 201–206 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Aitchison, J. S. et al. Observation of spatial optical solitons in a nonlinear glass waveguide. Opt. Lett. 15, 471–473 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Segev, M., Crosignani, B., Yariv, A. & Fischer, B. Spatial solitons in photorefractive media. Phys. Rev. Lett. 68, 923–926 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Duree, G. et al. Observation of self-trapping of an optical beam due to the photorefractive effect. Phys. Rev. Lett. 71, 533–536 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Torruellas, W. E. et al. Observation of two-dimensional spatial solitary waves in quadratic media. Phys. Rev. Lett. 74, 5036–5039 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Tikhonenko, V., Christou, J. & Luther-Davies, B. Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium. Phys. Rev. Lett. 76, 2698–2701 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Mitchell, M., Chen, Z., Shih, M. & Segev, M. Self-trapping of partially spatially-incoherent light. Phys. Rev. Lett. 77, 490–493 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Segev, M., Valley, G. C., Crosignani, B., DiPorto, P. & Yariv, A. Steady state spatial screening-solitons in photorefractive media with external applied field. Phys. Rev. Lett. 73, 3211–3214 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Christodoulides, D. N. & Carvalho, M. I. Bright, dark and gray spatial soliton states in photorefractive mdeia. J. Opt. Soc. Am. B 12, 1628–1633 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Segev, M., Shih, M. & Valley, G. C. Photorefractive screening solitons of low and high intensity. J. Opt. Soc. Am. B 13, 706–718 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Iturbe-Castillo, M. D., Marquez-Aguilar, P. A., Sanchez-Mondragon, J. J., Stepanov, S. & Vysloukh, V. Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity. Appl. Phys. Lett. 64, 408–410 (1994).

    Article  ADS  Google Scholar 

  18. Shih, M. et al. Observation of two-dimensional steady-state photorefractive screening-solitons. Electron. Lett. 31, 826–827 (1995); Two-dimensional steady-state photorefractive screening solitons. Opt. Lett. 21, 324–326 (1996).

    Article  ADS  Google Scholar 

  19. Goodman, J. Statistical Optics (Wiley, New York, (1985)).

    Google Scholar 

  20. Singh, S. R. & Christodoulides, D. N. Evolution of spatial optical solitons in biased photorefractive media under steady state conditions. Opt. Commun. 118, 569–576 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Army Research Office and the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mordechai Segev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, M., Segev, M. Self-trapping of incoherent white light. Nature 387, 880–883 (1997). https://doi.org/10.1038/43136

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/43136

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing