This tree's genetic uniformity may have helped to fell entire European populations.
Abstract
The outbreak of Dutch elm disease in the 1970s ravaged European elm populations, killing more than 25 million trees in Britain alone; the greatest impact was on Ulmus procera, otherwise known as the English elm1. Here we use molecular and historical information to show that this elm derives from a single clone that the Romans transported from Italy to the Iberian peninsula, and from there to Britain, for the purpose of supporting and training vines. Its highly efficient vegetative reproduction and its inability to set seeds have preserved this clone unaltered for 2,000 years as the core of the English elm population — and the preponderance of this susceptible variety may have favoured a rapid spread of the disease.
Similar content being viewed by others
Main
Following the results from the European Union project RESGEN CT96-78 on elm genetic resources, we studied the variability of chloroplast DNA in the two elm species native to Spain (the field elm, U. minor Miller sensu latissimo2, and the wych elm, U. glabra Huds.) and in elm samples from France, Greece, Italy and Britain (for methods, see supplementary information).
We analysed restriction fragment-length polymorphisms in chloroplast DNA after amplification by polymerase chain reaction and detected four major chloroplast lineages, which are maternally inherited in Ulmus (see supplementary information). Lineage A appears in Greece; lineage B in northern Italy; lineage C in Italy, the Iberian peninsula and Britain (but not in France); and lineage D throughout all of Spain, northern Italy, France and Britain. Lineage-D haplotypes appear in both U. minor and U. glabra samples. By contrast, in Spain and Britain, lineage-C haplotypes are observed only in U. minor, although they appear in both species in Italy (mainly in elms from the central region).
Except for the presence of lineage C in the Iberian peninsula and Britain, the distribution of lineages is very similar to those described for other trees3. Haplotype sharing among tree species is reckoned to indicate their presence in common glacial refugia, where chloroplasts would have been exchanged through hybridization and introgression4. Absence of lineage-C haplotypes in Spanish U. glabra highlights the lack of refugia for this lineage in Iberia, whereas its presence in both elms in Italy indicates that this lineage has an Italian origin.
Eighteen field elms with the same haplotype (from lineage C), collected from across Spain, Britain and central Italy, as well as five lineage-D individuals from Spain and Britain, were genotyped using seven nuclear microsatellites5 and two amplified fragment-length polymorphism (AFLP) primer combinations. The results revealed a widely distributed clone within lineage-C elms, represented here by five Spanish and three British samples (see supplementary information). We detected slight differences among the AFLP fingerprinting profiles of these eight samples, attributable to somatic mutations. The closest genetic similarity was observed between the clone and samples from Latium in Italy, which reinforces the idea that its origin was Roman.
These eight individuals were classified as English elm (U. minor var. vulgaris2, commonly called U. procera Salisb. by British botanists2). In Britain2 and in Spain6, English elm rarely sets seeds, but produces pollen normally and is very effective in vegetative propagation. These reproductive features, together with the deliberate plantation of this variety of elm by humans, could explain the maintenance of this genotype and its spread over Spain and Britain. But when, whence and why was it transported?
Although it has been suggested that the English elm was introduced during the Bronze Age by Celtic tribes2, our results support a hypothesis7 that it corresponds to the Atinian elm, which was used for vine-training by the Romans. In his treaty De Re Rustica8 (written in about AD 50), the Roman agronomist Columella advocates the use of elm for this purpose, recommending in particular a barren tree that was vegetatively propagated — the Atinian elm.
Columella owned three farms in Latium9, where most Italian lineage-C samples are found, and a fourth vineyard in Xerez10 (Andalusia, Spain). He and other farmers may have introduced different Italian elms to the Iberian peninsula, including the Atinian elm. Columella's writings influenced the subsequent establishment of vineyards to such an extent that the Roman emperor Domitian prohibited the plantation of new vines in Italy in AD 92 and ordered half of the vineyards in the provinces to be cut down11. In the meantime, the Atinian clone spread across Iberia and was probably transported to Britain in the form of root suckers, as indicated by the presence of elm pollen in a Roman vineyard in Britain12 and by the coincident distribution of suspected Roman vineyards12 and U. procera in Britain2.
The identification of the English elm with the Atinian clone was first proposed in the nineteenth century7. Our findings provide molecular support for this proposal and indicate that the English elm originated from the massive propagation of the Atinian clone by the Romans. This large-scale transformation of the elm's natural diversity became critical in the twentieth century, when most English elms succumbed to Dutch elm disease1, and should be taken into account in current European elm breeding and conservation strategies.
References
Brasier, C. in Forest Research 20–28 (Forestry Commission Report, Edinburgh, 1996).
Richens, R. H. Elm (Cambridge Univ. Press, Cambridge, 1983).
Hewitt, G. M. Biol. J. Linn. Soc. 68, 87–112 (1999).
Dumolin-Lapègue, S., Demesure, B., Fineschi, S., Le Corre, V. & Petit, R. J. Genetics 146, 1475–1487 (1997).
Collada, C., Fuentes-Utrilla, P., Gil, L. & Cervera, M. T. Mol. Ecol. Notes (in the press).
López-Almansa, J. C., Pannell, J. R. & Gil, L. Am. J. Bot. 90, 603–609 (2003).
Heybroek, H. M. Forestry Compendium CD-ROM (CAB International, 2000).
Forster, E. S. & Heffner, E. (translators) Lucius Junius Moderatus Columella: On Agriculture II (Harvard Univ. Press, Cambridge, Massachusetts, 1954; reprinted 1977).
Ash, H. B. (translator) Lucius Junius Moderatus Columella: On Agriculture I (Harvard Univ. Press, Cambridge, Massachusetts, 1941; reprinted 1977).
Tovar, A. in Homenaje Nacional a Lucio Junio Moderato Columela 93–99 (Asociación de Publicistas y Escritores Agrarios Españoles, Cádiz, 1975).
Martin, R. Recherches sur les Agronomes Latins et leurs Conceptions Economiques et Sociales (Les Belles Lettres, Paris, 1971).
Brown, A. G., Meadows, I., Turner, S. D. & Mattingly, D. J. Antiquity 75, 745–757 (2001).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Methods
Describes the sampling procedure for Ulmus minor and U. glabra, as well as techniques used to analyse chloroplast (PCR-RFLP) and nuclear (microsatellites and AFLPs) DNAs. (DOC 23 kb)
Supplementary Figure 1a
Geographical distribution and lineages (defined in the minimum spanning tree) of chloroplast DNA haplotypes found in Ulmus minor and U. glabra. Disjointed distribution of lineage C, present in both species in Italy but only in U. minor in Iberia and Britain, suggests its Italian origin. (JPG 203 kb)
Supplementary Figure 1b
Dendrogram representing genetic distances among 23 Ulmus minor individuals, based on AFLPs. Trees from Italy, Spain and UK were included. Presence of a widespread elm clone in Spain and England has been detected. (JPG 58 kb)
Rights and permissions
About this article
Cite this article
Gil, L., Fuentes-Utrilla, P., Soto, Á. et al. English elm is a 2,000-year-old Roman clone. Nature 431, 1053 (2004). https://doi.org/10.1038/4311053a
Published:
Issue Date:
DOI: https://doi.org/10.1038/4311053a
This article is cited by
-
Complexities underlying the breeding and deployment of Dutch elm disease resistant elms
New Forests (2023)
-
Tracing the role of human civilization in the globalization of plant pathogens
The ISME Journal (2018)
-
The Natural Evolutionary Potential of Tree Populations to Cope with Newly Introduced Pests and Pathogens—Lessons Learned From Forest Health Catastrophes in Recent Decades
Current Forestry Reports (2016)
-
Strong in vitro antagonism by elm xylem endophytes is not accompanied by temporally stable in planta protection against a vascular pathogen under field conditions
European Journal of Plant Pathology (2015)
-
Population clustering and clonal structure evidence the relict state of Ulmus minor Mill. in the Balearic Islands
Heredity (2014)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.