
A jet of fluid flowing down a partially
wetting, inclined plane usually me-
anders but — by maintaining a con-

stant flow rate — meandering can be
suppressed, leading to the emergence of a
beautiful braided structure. Here we show
that this flow pattern can be explained by
the interplay between surface tension, which
tends to narrow the jet, and fluid inertia,
which drives the jet to widen. These obser-
vations dispel misconceptions about the
relationship between braiding and mean-
dering that have persisted for over 20 years.

The flow of water down a partially wet-
ting, inclined surface, as in rivers and
streams, is affected by the substrate’s rough-
ness and by flow disturbances. This results in
seemingly random height and width varia-
tions and meandering. River morphology is
also influenced by soil erosion1, which is not
necessarily present in the general case of flow
down an inclined surface.

We observe that the meandering of a
stream on a smooth, non-eroding, inclined
plane is caused entirely by upstream distur-
bances, and meandering can therefore be
eliminated, contrary to established belief 2.
However, the variations in the height and
width of a braided stream represent an inher-
ent instability of the stream caused by the
interaction of surface tension and inertia.

To visualize the stream dynamics, a flat
incline (such as an acrylic plate) can be
placed under a faucet: the small fluctuations
always present in tap water will cause this
stream to meander. In our experiment, the
meandering is eliminated by maintaining a
constant flow rate; we then see a stationary
braiding pattern in which the width of the
stream expands and contracts as it propa-
gates (for methods, see supplementary
information).

This braiding pattern can be explained as
follows. When the fluid jet strikes the
inclined surface, it spreads out owing to the
inertia of the impact. Most of the fluid flows
at the outer boundaries of the flow, and the
interior of the stream is very shallow. Surface
tension limits the extent of the spreading and
pulls the outer boundaries of the flow back
together. In the process of contraction, the
outer edges accelerate beyond equilibrium
and ‘bounce’ on impact, forcing the bound-
aries outwards; the outer edges then collapse
again because of surface tension, and the
process repeats.

The amplitude of the subsequent
bounces decreases owing to viscous dissipa-
tion, and far downstream the flow assumes
a simple profile with a part-circular cross-
section, when all the forces are in balance3,4.

This structure is reminiscent of the fluid
chain structure produced by two fluid jets
colliding in air5, although it is different in
its physics because of dissipation at the
solid surface.

To explain the braiding phenomenon
quantitatively, we constructed a model that
assumes that the stream is shallow, the
downstream velocity component dominates
the flow, and the contact angle between the
plate and fluid is constant (see supplemen-
tary information). Previous, more complex
models6,7 do not account for the large 
amplitude variations that we observe. Our
simple model incorporates inertial effects in
flows down an inclined plane8,9 and couples
two ordinary differential equations that 
predict both the nonlinear evolution of the
braids and the transition from the braiding
to non-braiding situation.

Although our assumption of a constant
contact angle is an approximation10, it
greatly simplifies the analysis. Figure 1
shows that the agreement between the
model and experiment is excellent
throughout the parameter range investi-
gated; it also shows that the braid-length
dependence on the parameters �1 and 
�2 (see supplementary information) can
account for the transition to a dissipation-
dominated, non-braiding flow.
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Braiding patterns on an inclined plane
The changing boundaries of a stream flowing at a constant rate are explained.
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Figure 1 Predicted and experi-

mental braiding patterns in

water. a, Experimental observa-

tion of braiding flow. Parameters

varied are flow rate q, inclination

angle � and viscosity �. Here

q�12.2 cm3 s�1, ��45°,

��0.016 cm2 s�1. The flow

also depends on surface ten-

sion, �, and acceleration due 

to gravity, g. Red line indicates

agreement with theory. Scale 

in centimetres; flow direction is 

left to right. b, Experimentally

observed braiding (filled circles)

and non-braiding (open circles)

flow represented by the dimen-

sionless parameters �1 and �2,

where �1�
1/2��

7q 5(g sin�)4��7

and �2�
1/2��

2q (g sin�)��2.

Solid line, theoretical transition

boundary from non-braiding to

braiding flow; dashed line,

power-law fit �2�1.53 �1
1.89.
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