Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of isopenicillinN synthase complexed with substrate and the mechanism ofpenicillin formation

Abstract

The biosynthesis of penicillin and cephalosporin antibiotics in microorganisms requires the formation of the bicyclic nucleus of penicillin1. Isopenicillin N synthase (IPNS), a non-haem iron-dependent oxidase, catalyses the reaction of a tripeptide, δ-(L-α-aminoadipoyl)- L-cysteinyl-D-valine (ACV), and dioxygen to form isopenicillin N and two water molecules2. Mechanistic studies suggest the reaction is initiated by ligation of the substrate thiolate to the iron centre, and proceeds through an enzyme-bound monocyclic intermediate3,4 (Fig. 1). Here we report the crystal structure of IPNS complexed to ferrous iron and ACV, determined to 1.3 å resolution. Based on the structure, we propose a mechanism for penicillin formation that involves ligation of ACV to the iron centre, creating a vacant iron coordination site into which dioxygen can bind. Subsequently, iron-dioxygen and iron-oxo species remove the requisite hydrogens from ACV without the direct assistance of protein residues (Fig. 2). The crystal structure of the complex with the dioxygen analogue, NO and ACV bound to the active-site iron supports this hypothesis.

AA, L-δ-(α-aminoadipoyl).

sp;IPNS complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 3: Comparison of the structures of Mn: IPNS (a) and Fe(II): ACV: IPNS (.
Figure 4: Comparison of the structures of Mn: IPNS (a) and Fe(II): ACV: IPNS (.
Figure 5: Structure of the active-site region.
Figure 6: Structure of the active-site region.

Similar content being viewed by others

References

  1. Baldwin, J. E. & Abraham, E. Biosynthesis of penicillins and cephalosporins. Nat. Prod. Rep. 5, 129– 145 (1988).

    Article  CAS  Google Scholar 

  2. Pang, C. P. et al. Purification of isopenicillin N synthetase. Biochem. J. 222, 789–795 ( 1984).

    Article  CAS  Google Scholar 

  3. Baldwin, J. E. & Schofield, C. J. in The Chemistry of β-lactams (ed. Page, M. I.) 1–78 (Blackie, London, (1992)).

    Book  Google Scholar 

  4. Que, L. & Ho, R. Y. N. Dioxygen activation by enzymes with mononuclear non-haem iron active sites. Chem. Rev. 96 , 2607–2624 (1996).

    Article  CAS  Google Scholar 

  5. Orville, A. M. et al. Thiolate ligation of the active site iron(II) of isopenicillin N synthase derives from substrate rather than endogenous cysteine: spectroscopic studies of site-specific Cys → Ser mutated enzymes. Biochemistry 31, 4602–4612 ( 1992).

    Article  CAS  Google Scholar 

  6. Randall, C. R. et al. X-ray absorption studies of the ferrous active site of isopenicillin N synthase and related model complexes. Biochemistry 32, 6664–6673 (1993).

    Article  CAS  Google Scholar 

  7. Roach, P. L. et al. Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature 375, 700–704 (1995).

    Article  CAS  ADS  Google Scholar 

  8. Roach, P. L. et al. Anaerobic crystallisation of an isopenicillin N synthase.Fe(II).substrate complex demonstrated by X-ray studies. Eur. J. Biochem. 242, 736–740 (1996).

    Article  CAS  Google Scholar 

  9. Borovok, I., Landman, O., Kreisberg-Zakarin, R., Aharonowitz, Y. & Cohen, G. Ferrous active site of isopenicillin N synthase: genetic and sequence analysis of endogenous ligands. Biochemistry 35, 1981–1987 (1996).

    Article  CAS  Google Scholar 

  10. Chen, V. J. et al. Spectroscopic studies of isopenicillin N synthase. A mononuclear nonhaem Fe2+oxidase with metal coordination sites for small molecules and substrate. J. Biol. Chem. 264, 21677–21681 (1989).

    CAS  PubMed  Google Scholar 

  11. Baldwin, J. E. et al. Penicillin biosynthesis: active site mapping with aminoadipoylcysteinylvaline variants. J. Chem. Soc. Chem. Commun. 1225– 1227 (1984).

  12. Rowe, C. J. thesis, Oxford Univ. (1995).

  13. Hadfield, A. & Hajdu, J. Afast and portable microspectrophotometer for protein crystallography. J. Appl. Crystallogr. 26 , 839–842 (1993).

    Article  CAS  Google Scholar 

  14. Cooper, R. D. G. The enzymes involved in biosynthesis of penicillin and cephalosporin: Their structure and function. Bioorg. Med. Chem. 1, 1–17 (1993).

    Article  CAS  Google Scholar 

  15. Baldwin, J. E. et al. Evidence for an insertion-homolysis mechanism for carbon-sulfur bond formation in penicillin biosynthesis; 2. Incubation and interpretation. Tetrahedron 52, 2537–2556 (1996).

    Article  CAS  Google Scholar 

  16. Groves, J. T. & Han, Y. Z. in Cytochrome P-450: Structure, Chemistry and Biochemistry 2nd edn (ed. Ortiz de Montellano, P. R.) 3– 49 (Plenum, New York, (1995)).

    Book  Google Scholar 

  17. Baldwin, J. E., Morris, G. M. & Richards, W. G. Electron transport in cytochromes P-450 by covalent switching. Proc. R. Soc. Lond. B 245, 43– 52 (1991).

    Article  CAS  ADS  Google Scholar 

  18. Prescott, A. G. Adilemma of dioxygenases (or where biochemistry and molecular biology fail to meet). J. Exp. Bot. 44, 849– 861 (1993).

    Article  CAS  Google Scholar 

  19. Hanauske-Abel, H. M. & Guzzler, V. Astereochemical concept for the catalytic mechanism of prolylhydroxylase. J. Theor. Biol. 94, 421–455 ( 1982).

    Article  CAS  Google Scholar 

  20. Shu, L. et al. X-ray absorption spectroscopic studies of the Fe(II) active site of catechol 2,3-dioxygenase. Implications for the extradiol cleavage mechanism. Biochemistry 34, 6649–6659 (1995).

    Article  CAS  Google Scholar 

  21. Han, S., Eltis, L. D., Timmis, K. N., Muchmore, S. W. & Bolin, J. T. Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading pseudomonad. Science 270, 976–980 ( 1995).

    Article  CAS  ADS  Google Scholar 

  22. Senda, T. et al. Three-dimensional structures of free form and two substrate complexes of an extradiol ring-cleavage type dioxygenase, the BphC enzyme from Pseudomonas sp. strain KKS102. J. Mol. Biol. 255, 735–752 (1996).

    Article  CAS  Google Scholar 

  23. Otwinowski, Z. in Data Collection and Processing (eds Sawyer, L., Isaacs, N. W. & Bailey, S.) 55–62 (Daresbury Laboratory, Warrington, UK, (1993)).

    Google Scholar 

  24. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 ( 1994).

    Article  Google Scholar 

  25. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjelgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  26. Brünger, A. T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  27. Konnert, J. H. & Hendrickson, W. A. Arestrained-parameter thermal-factor refinement procedure. Acta Crystallogr. A 36, 344–350 (1980).

    Article  ADS  Google Scholar 

  28. Sheldrick, G. M. SHELXL93, Program for Crystal Structure Refinement (Univ. Gottingen, Germany, (1993)).

    Google Scholar 

  29. Leslie, A. G. W. Mosflm (MRC Laboratory of Molecular Biology, Cambridge, ( 1996)).

    Google Scholar 

  30. CCP4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Harlos, E. Garman, R. Bryan, I. Andersson, R. M. Adlington, R. C. Wilmouth, V. Fülöp, J. P. N. Pitt, A. Howe, S. Lee, J. W. Keeping, B. Rasmussen and A. Thompson for help and discussions. Financial support was provided by the MRC, BBSRC, EPSRC and Zeneca through a DTI link scheme.

Author information

Authors and Affiliations

Author notes

  1. The crystallographic coordinates have been deposited in the Brookhaven Protein Data Bank (accession nos 1IPS, 2IPS and 3IPS) and will be released one year after publication.

    Authors

    Rights and permissions

    Reprints and permissions

    About this article

    Cite this article

    Roach, P., Clifton, I., Hensgens, C. et al. Structure of isopenicillinN synthase complexed with substrate and the mechanism ofpenicillin formation. Nature 387, 827–830 (1997). https://doi.org/10.1038/42990

    Download citation

    • Received:

    • Accepted:

    • Issue Date:

    • DOI: https://doi.org/10.1038/42990

    This article is cited by

    Comments

    By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

    Search

    Quick links

    Nature Briefing

    Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

    Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing