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Ahallmark of intelligent learning is
that we can apply what we have
learned to new situations. In the

mathematical theory of learning, this ability
is called generalization. On page 419 of this
issue1, Poggio et al. formulate an elegant
condition for a learning system to general-
ize well.

As an illustration, consider practising
how to hit a tennis ball.We see the trajectory
of the incoming ball, and we react with com-
plex motions of our bodies. Sometimes we
hit the ball with the racket’s sweet spot and
send it where we want; sometimes we do less
well. In the theory of supervised learning,an
input–output pair exemplified by a trajec-
tory and the corresponding reaction is called
a training sample. A learning algorithm
observes many training samples and com-
putes a function that maps inputs to out-
puts.The learned function generalizes well if
it does about as well on new inputs as on the
old ones: if this is true, our performance
during tennis practice is a reliable indication
of how well we will play during the game.

Given an appropriate measure for the
‘cost’ of a poor hit, the algorithm could
choose the least expensive function over the
set of training samples,an approach to learn-
ing called empirical risk minimization. A
classical result2 in learning theory shows that
the functions learned through empirical risk
minimization generalize well only if the
‘hypothesis space’ from which they are cho-
sen is simple enough. That there may be
trouble in a poor choice of hypotheses is a
familiar concept in most scientific disci-
plines. For instance, a high-degree poly-
nomial fitted to a set of data points can swing
wildly between them, and these swings
decrease our confidence in the ability of
the polynomial to make correct predictions
about function values between available data
points. For similar reasons, we have come to
trust Kepler’s simple description of the ellip-
tical motion of heavenly bodies more than
the elaborate system of deferents, epicycles
and equants of Ptolemy’s Almagest, no mat-
ter how well the latter fit the observations.

The classical definition of a ‘simple
enough’ hypothesis space is brilliant but
technically involved. For instance, the set of
linear functions defined on the plane
has a complexity (or Vapnik–Chervonenkis
dimension2) of three because this is the
greatest number of points that can be
arranged on the plane so that suitable linear
functions assume any desired combination
of signs (positive or negative) when evalua-
ted at the points. This definition is a mouth-
ful already for this simple case.Although this
approach has generated powerful learning
algorithms2, the complexity of hypothesis
spaces for many realistic scenarios quickly
becomes too hard to measure with this
yardstick. In addition, not all learning prob-
lems can be formulated through empirical
risk minimization, so classical results might
not apply.

Poggio et al.1 propose an elegant solution
to these difficulties that builds on earlier
intuitions3–5 and shifts attention away from
the hypothesis space. Instead, they require
the learning algorithm to be stable if it is to
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produce functions that generalize well. In a
nutshell, an algorithm is stable if the removal
of any one training sample from any large set
of samples results almost always in a small
change in the learned function. Post facto,
this makes intuitive sense: if removing one
sample has little consequence (stability),
then adding a new one should cause little
surprise (generalization). For example, we
expect that adding or removing an obser-
vation in Kepler’s catalogue will usually
not perturb his laws of planetary motion
substantially.

The simplicity and generality of the sta-
bility criterion promises practical utility. For
example,neuronal synapses in the brain may
have to adapt (learn) with little or no
memory of past training samples. In these
cases, empirical risk minimization does not
help, because computing the empirical risk
requires access to all past inputs and outputs.
In contrast, stability is a natural criterion to
use in this context, because it implies
predictable behaviour. In addition, stability
could conceivably lead to a so-called online
algorithm — that is, one that improves its
output as new data become available.

Of course, stability is not the whole story,
just as being able to predict our tennis per-
formance does not mean that we will play
well. If after practice we play as well as the
best game contemplated in our hypothesis
space, then our learning algorithm is said to
be consistent. Poggio et al.1 show that stabil-
ity is equivalent to consistency for empirical
risk minimization, whereas for other learn-
ing approaches stability only ensures good
generalization.Even so,stability can become
a practically important learning tool,as long
as some key challenges are met. Specifically,
Poggio et al.1 define stability in asymptotic
form, by requiring certain limits to vanish as
the size of the training set becomes large. In
addition, they require this to be the case for
all possible probabilistic distributions of the
training samples. True applicability to real
situations will depend on how well these
results can be rephrased for finite set sizes. In
other words, can useful measures of stability
and generalization be estimated from
finite training samples? And is it feasible to
develop statistical confidence tests for them?
A new, exciting research direction has
been opened. ■
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In or out: success rests on learning algorithms
that are stable against slight changes in input
conditions1.
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