Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Networking opportunity

A neglected mathematical theory is enjoying new popularity, thanks to its relevance to network dynamics in biological systems. The beating of a leech's heart is just one example that has a mathematical basis in ‘groupoid theory’.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The heart of the leech Hirudo medicinalis: a, the physiology and b, the observed patterns of neural activity.

A. & H.-F. MICHLER/SPL

Figure 2
Figure 3: Describing a network.
Figure 4: A square lattice, with nearest-neighbour coupling between nodes.

References

  1. Guelzim, N., Bottani, S., Bourgine, P. & Kepes, F. Nature Genet. 31, 60–63 (2002).

    CAS  Article  Google Scholar 

  2. Solé, R. V. & Pastor-Sattaras, R. in Handbook of Graphs and Networks (eds Bornholdt, S. & Schuster, H. G.) 145–167 (Wiley-VCH, Berlin, 2003).

    Google Scholar 

  3. Grassberger, P. Math. Biosci. 63, 157–172 (1983).

    Article  Google Scholar 

  4. Neutel, A.-M., Heesterbeek, J. A. P. & de Ruiter, P. C. Science 96, 1120–1123 (2002).

    ADS  Article  Google Scholar 

  5. Golubitsky, M., Stewart, I., Collins, J. J. & Buono, P.-L. Nature 401, 693–695 (1999).

    ADS  CAS  Article  Google Scholar 

  6. Bressloff, P. C., Cowan, J. D., Golubitsky, M., Thomas, P. J. & Wiener, M. C. Phil. Trans. R. Soc. Lond. B 356, 299–330 (2001).

    CAS  Article  Google Scholar 

  7. Stewart, I. & Cohen, J. in Nonlinear Phenomena in Biological and Physical Sciences (eds Malik, S. K., Chandrasekharan, M. K. & Pradhan, N.) 1–63 (Indian Natl Sci. Acad., New Delhi, 2000).

    Google Scholar 

  8. Stewart, I., Elmhirst, T. & Cohen, J., in Bifurcations, Symmetry, and Patterns (eds Buescu, J., Castro, S. & Dias, A. P. S.) 3–54 (Birkhäuser, Basel, 2003).

    Book  Google Scholar 

  9. Stewart, I. Phil. Trans. R. Soc. Lond. A 361, 1101–1123 (2003).

    ADS  Article  Google Scholar 

  10. Mirollo, R. E. & Strogatz, S. H. SIAM J. Appl. Math. 50, 1645–1662 (1990).

    MathSciNet  Article  Google Scholar 

  11. Pecora, L. M. & Carroll, T. L. Phys. Rev. Lett. 64, 821–824 (1990).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  12. Boccaletti, S., Pecora, L. M. & Pelaez, A. Phys. Rev E 63, 066219 (2001).

    ADS  CAS  Article  Google Scholar 

  13. Wang, X. F. Int. J. Bifurc. Chaos 12, 885–916 (2002).

    Article  Google Scholar 

  14. Stewart, I., Golubitsky, M. & Pivato, M. SIAM J. Appl. Dyn. Syst. (in the press).

  15. Weinstein, A. Not. Am. Math. Soc. 43, 744–752 (1996).

    Google Scholar 

  16. Calabrese, R. L. & Peterson, E. Symp. Soc. Exp. Biol. 37, 195–221 (1983).

    CAS  PubMed  Google Scholar 

  17. Gramoll, S., Schmidt, J. & Calabrese, R. L. J. Exp. Biol. 186, 157–171 (1994).

    CAS  PubMed  Google Scholar 

  18. Golubitsky, M., Josic, K. & Kaper, T. J. in Global Analysis of Dynamical Systems (eds Broer, H., Krauskopf, B. & Vegter, C.) 277–308 (Inst. Phys., Bristol, 2001).

    MATH  Google Scholar 

  19. Milo, R. et al. Science 298, 824–827 (2002).

    ADS  CAS  Article  Google Scholar 

  20. Shen-Orr, S., Milo, R., Shmoolik, M. & Alon, U. Nature Genet. 31, 64–68 (2002).

    CAS  Article  Google Scholar 

  21. Tutte, W. T. Graph Theory (Addison-Wesley, Menlo Park, 1984).

    MATH  Google Scholar 

  22. Kauffman, S. A. J. Theor. Biol. 22, 437–467 (1969).

    CAS  Article  Google Scholar 

  23. Wolfram, S. (ed.) Theory and Applications of Cellular Automata (World Scientific, Singapore, 1986).

  24. Golubitsky, M. & Stewart, I. The Symmetry Perspective (Birkhäuser, Basel, 2002).

    Book  Google Scholar 

  25. Grimmett, G. R. & Stirzaker, D. R. Probability and Random Processes (Clarendon, Oxford, 1992).

    MATH  Google Scholar 

  26. Barnsley, M. F. Fractals Everywhere (Academic, Boston, 1993).

    MATH  Google Scholar 

  27. Mainzer, K. Thinking in Complexity (Springer, Berlin, 1994).

    Book  Google Scholar 

  28. Watts, D. J. & Strogatz, S. H. Nature 393, 440–442 (1998).

    ADS  CAS  Article  Google Scholar 

  29. Newman, M. E. J. SIAM Rev. 45, 167–256 (2003).

    ADS  MathSciNet  Article  Google Scholar 

  30. Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984).

    Book  Google Scholar 

  31. Burn, R. P. Groups: A Path to Geometry (Cambridge Univ. Press, 1985).

    Book  Google Scholar 

  32. Brandt, H. Math. Ann. 96, 360–366 (1927).

    MathSciNet  Article  Google Scholar 

  33. Golubitsky, M., Nicol, M. & Stewart, I. Some Curious Phenomena in Coupled Cell Networks (in the press).

  34. Singer, W. Neuron 24, 49–65 (1999).

    CAS  Article  Google Scholar 

  35. Ashwin, P., Buescu, J. & Stewart, I. Nonlinearity 9, 703–737 (1996).

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stewart, I. Networking opportunity. Nature 427, 601–604 (2004). https://doi.org/10.1038/427601a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/427601a

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing